463 research outputs found
Perfect Test of Entanglement for Two-level Systems
A 3-setting Bell-type inequality enforced by the indeterminacy relation of
complementary local observables is proposed as an experimental test of the
2-qubit entanglement. The proposed inequality has an advantage of being a
sufficient and necessary criterion of the separability. Therefore any entangled
2-qubit state cannot escape the detection by this kind of tests. It turns out
that the orientation of the local testing observables plays a crucial role in
our perfect detection of the entanglement.Comment: 4 pages, RevTe
Dielectric properties of hydrogen-incorporated chemical vapor deposited diamond thin films
Diamond thin films with a broad range of microstructures from a ultrananocrystalline diamond (UNCD) form developed at Argonne National Laboratory to a microcrystalline diamond (MCD) form have been grown with different hydrogen percentages in the Ar/CH4 gas mixture used in the microwave plasma enhanced chemical vapor deposition (CVD) process. The dielectric properties of the CVD diamond thin films have been studied using impedance and dc measurements on metal-diamond-metal test structures. Close correlations have been observed between the hydrogen content in the bulk of the diamond films, measured by elastic recoil detection (ERD), and their electrical conductivity and capacitance-frequency (C-f) behaviors. Addition of hydrogen gas in the Ar/CH4 gas mixture used to grow the diamond films appears to have two main effects depending on the film microstructure, namely, (a) in the UNCD films, hydrogen incorporates into the atomically abrupt grain boundaries satisfying sp2 carbon dangling bonds, resulting in increased resistivity, and (b) in MCD, atomic hydrogen produced in the plasma etches preferentially the graphitic phase codepositing with the diamond phase, resulting in the statistical survival and growth of large diamond grains and dominance of the diamond phase, and thus having significant impact on the dielectric properties of these films
Activated dissociation of O2 on Pb(111) surfaces by Pb adatoms
We investigate the dissociation of O2 on Pb(111) surface using
first-principles calculations. It is found that in a practical high-vacuum
environment, the adsorption of molecular O2 takes place on clean Pb surfaces
only at low temperatures such as 100 K, but the O2 easily desorbs at (elevated)
room temperatures. It is further found that the Pb adatoms enhance the
molecular adsorption and activate the adsorbed O2 to dissociate during
subsequent room-temperature annealing. Our theory explains the observation of a
two-step oxidation process on the Pb surfaces by the unique role of Pb adatoms
CVM studies on the atomic ordering in complex perovskite alloys
The atomic ordering in complex perovskite alloys is investigated by the
cluster variation method (CVM). For the 1/3\{111\}-type ordered structure, the
order-disorder phase transition is the first order, and the order parameter of
the 1:2 complex perovskite reaches its maximum near x=0.25. For the
1/2\{111\}-type ordered structure, the ordering transition is the second order.
Phase diagrams for both ordered structures are obtained. The order-disorder
line obeys the linear law.Comment: 10 pages, 6 figure
Intracellular β\u3csub\u3e1\u3c/sub\u3e-Adrenergic Receptors and Organic Cation Transporter 3 Mediate Phospholamban Phosphorylation to Enhance Cardiac Contractility
Rationale:
β1ARs (β1-adrenoceptors) exist at intracellular membranes and OCT3 (organic cation transporter 3) mediates norepinephrine entry into cardiomyocytes. However, the functional role of intracellular β1AR in cardiac contractility remains to be elucidated. Objective:
Test localization and function of intracellular β1AR on cardiac contractility. Methods and Results:
Membrane fractionation, super-resolution imaging, proximity ligation, coimmunoprecipitation, and single-molecule pull-down demonstrated a pool of β1ARs in mouse hearts that were associated with sarco/endoplasmic reticulum Ca2+-ATPase at the sarcoplasmic reticulum (SR). Local PKA (protein kinase A) activation was measured using a PKA biosensor targeted at either the plasma membrane (PM) or SR. Compared with wild-type, myocytes lacking OCT3 (OCT3-KO [OCT3 knockout]) responded identically to the membrane-permeant βAR agonist isoproterenol in PKA activation at both PM and SR. The same was true at the PM for membrane-impermeant norepinephrine, but the SR response to norepinephrine was suppressed in OCT3-KO myocytes. This differential effect was recapitulated in phosphorylation of the SR-pump regulator phospholamban. Similarly, OCT3-KO selectively suppressed calcium transients and contraction responses to norepinephrine but not isoproterenol. Furthermore, sotalol, a membrane-impermeant βAR-blocker, suppressed isoproterenol-induced PKA activation at the PM but permitted PKA activation at the SR, phospholamban phosphorylation, and contractility. Moreover, pretreatment with sotalol in OCT3-KO myocytes prevented norepinephrine-induced PKA activation at both PM and the SR and contractility. Conclusions:
Functional β1ARs exists at the SR and is critical for PKA-mediated phosphorylation of phospholamban and cardiac contractility upon catecholamine stimulation. Activation of these intracellular β1ARs requires catecholamine transport via OCT3
- …