22,287 research outputs found

    Data analysis techniques for stereo IACT systems

    Get PDF
    Based on data and Monte-Carlo simulations of the HEGRA IACT system, improved analysis techniques were developed for the determination of the shower geometry and shower energy from the multiple Cherenkov images. These techniques allow, e.g., to select subsamples of events with better than 3' angular resolution, which are used to limit the rms radius of the VHE emission region of the Crab Nebula to less than 1.5'. For gamma-rays of the Mrk 501 data sample, the energy can be determined to typically 10% and the core location to 2-3 m.Comment: 5 Pages, 3 Figures; Talk given at the TeV Gamma Ray Workshop, Snowbird, 199

    Cherenkov Telescope Array: The next-generation ground-based gamma-ray observatory

    Full text link
    High energy gamma-ray astronomy is a newly emerging and very successful branch of astronomy and astrophysics. Exciting results have been obtained by the current generation Cherenkov telescope systems such as H.E.S.S., MAGIC, VERITAS and CANGAROO. The H.E.S.S. survey of the galactic plane has revealed a large number of sources and addresses issues such as the question about the origin of cosmic rays. The detection of very high energy emission from extragalactic sources at large distances has provided insights in the star formation during the history of the universe and in the understanding of active galactic nuclei. The development of the very large Cherenkov telescope array system (CTA) with a sensitivity about an order of magnitude better than current instruments and significantly improved sensitivity is under intense discussion. This observatory will reveal an order of magnitude more sources and due to its higher sensitivity and angular resolution it will be able to detect new classes of objects and phenomena that have not been visible until now. A combination of different telescope types will provide the sensitivity needed in different energy ranges.Comment: 4 pages, 3 figures, to appear in the proceedings of the 30th International Cosmic Ray Conference, Merida, July 200

    Triggering of Imaging Air Cherenkov Telescopes: PMT trigger rates due to night-sky photons

    Get PDF
    Imaging air Cherenkov telescopes are usually triggered on a coincidence of two or sometimes more pixels, with discriminator thresholds in excess of 20 photoelectrons applied for each pixel. These thresholds required to suppress night-sky background are significantly higher than expected on the basis of a Poisson distribution in the number of night-sky photoelectrons generated during the characteristic signal integration time. We studied noise trigger rates under controlled conditions using an artificial background light source. Large tails in the PMT amplitude response to single photoelectrons are identified as a dominant contribution to noise triggers. The rate of such events is very sensitive to PMT operating parameters.Comment: 19 pages, latex,epsf, 7 figures appended as uuencoded file, submitted to Journal of Physics

    Monte Carlo studies on the sensitivity of the HEGRA imaging atmospheric Cerenkov telescope system in observations of extended gamma-ray sources

    Full text link
    In this paper, we present the results of Monte Carlo simulations of atmospheric showers induced by diffuse gamma rays as detected by the high-energy gamma ray astronomy (HEGRA) system of five imaging atmospheric Cerenkov telescopes (IACTs). We have investigated the sensitivity of observations on extended gamma ray emission over the entire field of view of the instrument. We discuss a technique to search for extended gamma ray sources within the field of view of the instrument. We give estimates for HEGRA sensitivity of observations on extended TeV gamma ray sources.Comment: 21 pages, 7 figures, accepted for publication in "Journal of Physics G: Nuclear and Particle Physics

    Cross Calibration of Telescope Optical Throughput Efficiencies using Reconstructed Shower Energies for the Cherenkov Telescope Array

    Full text link
    For reliable event reconstruction of Imaging Atmospheric Cherenkov Telescopes (IACTs), calibration of the optical throughput efficiency is required. Within current facilities, this is achieved through the use of ring shaped images generated by muons. Here, a complementary approach is explored, achieving cross calibration of elements of IACT arrays through pairwise comparisons between telescopes, focussing on its applicability to the upcoming Cherenkov Telescope Array (CTA). Intercalibration of telescopes of a particular type using eventwise comparisons of shower image amplitudes has previously been demonstrated to recover the relative telescope optical responses. A method utilising the reconstructed energy as an alternative to image amplitude is presented, enabling cross calibration between telescopes of varying types within an IACT array. Monte Carlo studies for two plausible CTA layouts have shown that this calibration procedure recovers the relative telescope response efficiencies at the few percent level.Comment: 8 pages, 4 figures, accepted for publication in Astroparticle Physic
    corecore