2,051 research outputs found

    Social Behavior: A Penny for Your Shocks

    Get PDF
    SummaryAntisocial behavior is an enormously costly social problem, but its origins are poorly understood. A new study shows that prosocial and antisocial behaviors arise from individual differences in how we represent the value of others’ pain relative to our own potential gain, rather than from variability in the capacity for effortful inhibitory control

    Measurement of entropy production rate in compressible turbulence

    Full text link
    The rate of change of entropy SË™\dot S is measured for a system of particles floating on the surface of a fluid maintained in a turbulent steady state. The resulting coagulation of the floaters allows one to relate SË™\dot S to the velocity divergence and to the Lyapunov exponents characterizing the behavior of this system. The quantities measured from experiments and simulations are found to agree well with the theoretical predictions.Comment: 7 Pages, 4 figures, 1 tabl

    Steady-state conduction in self-similar billiards

    Full text link
    The self-similar Lorentz billiard channel is a spatially extended deterministic dynamical system which consists of an infinite one-dimensional sequence of cells whose sizes increase monotonically according to their indices. This special geometry induces a nonequilibrium stationary state with particles flowing steadily from the small to the large scales. The corresponding invariant measure has fractal properties reflected by the phase-space contraction rate of the dynamics restricted to a single cell with appropriate boundary conditions. In the near-equilibrium limit, we find numerical agreement between this quantity and the entropy production rate as specified by thermodynamics

    Time-, Frequency-, and Wavevector-Resolved X-Ray Diffraction from Single Molecules

    Full text link
    Using a quantum electrodynamic framework, we calculate the off-resonant scattering of a broad-band X-ray pulse from a sample initially prepared in an arbitrary superposition of electronic states. The signal consists of single-particle (incoherent) and two-particle (coherent) contributions that carry different particle form factors that involve different material transitions. Single-molecule experiments involving incoherent scattering are more influenced by inelastic processes compared to bulk measurements. The conditions under which the technique directly measures charge densities (and can be considered as diffraction) as opposed to correlation functions of the charge-density are specified. The results are illustrated with time- and wavevector-resolved signals from a single amino acid molecule (cysteine) following an impulsive excitation by a stimulated X-ray Raman process resonant with the sulfur K-edge. Our theory and simulations can guide future experimental studies on the structures of nano-particles and proteins

    Power-law tail distributions and nonergodicity

    Full text link
    We establish an explicit correspondence between ergodicity breaking in a system described by power-law tail distributions and the divergence of the moments of these distributions.Comment: 4 pages, 1 figure, corrected typo

    Information-theoretic equilibration: the appearance of irreversibility under complex quantum dynamics

    Full text link
    The question of how irreversibility can emerge as a generic phenomena when the underlying mechanical theory is reversible has been a long-standing fundamental problem for both classical and quantum mechanics. We describe a mechanism for the appearance of irreversibility that applies to coherent, isolated systems in a pure quantum state. This equilibration mechanism requires only an assumption of sufficiently complex internal dynamics and natural information-theoretic constraints arising from the infeasibility of collecting an astronomical amount of measurement data. Remarkably, we are able to prove that irreversibility can be understood as typical without assuming decoherence or restricting to coarse-grained observables, and hence occurs under distinct conditions and time-scales than those implied by the usual decoherence point of view. We illustrate the effect numerically in several model systems and prove that the effect is typical under the standard random-matrix conjecture for complex quantum systems.Comment: 15 pages, 7 figures. Discussion has been clarified and additional numerical evidence for information theoretic equilibration is provided for a variant of the Heisenberg model as well as one and two-dimensional random local Hamiltonian

    A Class of Coupled KdV systems and Their Bi-Hamiltonian Formulations

    Full text link
    A Hamiltonian pair with arbitrary constants is proposed and thus a sort of hereditary operators is resulted. All the corresponding systems of evolution equations possess local bi-Hamiltonian formulation and a special choice of the systems leads to the KdV hierarchy. Illustrative examples are given.Comment: 8 pages, late

    Simulational Study on Dimensionality-Dependence of Heat Conduction

    Full text link
    Heat conduction phenomena are studied theoretically using computer simulation. The systems are crystal with nonlinear interaction, and fluid of hard-core particles. Quasi-one-dimensional system of the size of Lx×Ly×Lz(Lz≫Lx,Ly)L_x\times L_y\times L_z(L_z\gg L_x,L_y) is simulated. Heat baths are put in both end: one has higher temperature than the other. In the crystal case, the interaction potential VV has fourth-order non-linear term in addition to the harmonic term, and Nose-Hoover method is used for the heat baths. In the fluid case, stochastic boundary condition is charged, which works as the heat baths. Fourier-type heat conduction is reproduced both in crystal and fluid models in three-dimensional system, but it is not observed in lower dimensional system. Autocorrelation function of heat flux is also observed and long-time tails of the form of ∼t−d/2\sim t^{-d/2}, where dd denotes the dimensionality of the system, are confirmed.Comment: 4 pages including 3 figure

    Genetic characterization of HIV-1 subtype G envelope sequences by single genome analysis

    Get PDF
    Subtype G is the sixth most prevalent subtype of HIV-1 and is responsible for an estimated 1,500,000 infections worldwide. Although systematic analyses of a wide range of HIV-1 envelope sequences and neutralization have been performed, subtype G viruses are severely underrepresented in these studies. There is thus an important need to study subtype G envelope sequences and their neutralization capacities
    • …
    corecore