14 research outputs found

    Differentially correlated genes in co-expression networks control phenotype transitions.

    Get PDF
    BackgroundCo-expression networks are a tool widely used for analysis of "Big Data" in biology that can range from transcriptomes to proteomes, metabolomes and more recently even microbiomes. Several methods were proposed to answer biological questions interrogating these networks. Differential co-expression analysis is a recent approach that measures how gene interactions change when a biological system transitions from one state to another. Although the importance of differentially co-expressed genes to identify dysregulated pathways has been noted, their role in gene regulation is not well studied. Herein we investigated differentially co-expressed genes in a relatively simple mono-causal process (B lymphocyte deficiency) and in a complex multi-causal system (cervical cancer).MethodsCo-expression networks of B cell deficiency (Control and BcKO) were reconstructed using Pearson correlation coefficient for two mus musculus datasets: B10.A strain (12 normal, 12 BcKO) and BALB/c strain (10 normal, 10 BcKO). Co-expression networks of cervical cancer (normal and cancer) were reconstructed using local partial correlation method for five datasets (total of 64 normal, 148 cancer). Differentially correlated pairs were identified along with the location of their genes in BcKO and in cancer networks. Minimum Shortest Path and Bi-partite Betweenness Centrality where statistically evaluated for differentially co-expressed genes in corresponding networks.    Results: We show that in B cell deficiency the differentially co-expressed genes are highly enriched with immunoglobulin genes (causal genes). In cancer we found that differentially co-expressed genes act as "bottlenecks" rather than causal drivers with most flows that come from the key driver genes to the peripheral genes passing through differentially co-expressed genes. Using in vitro knockdown experiments for two out of 14 differentially co-expressed genes found in cervical cancer (FGFR2 and CACYBP), we showed that they play regulatory roles in cancer cell growth.ConclusionIdentifying differentially co-expressed genes in co-expression networks is an important tool in detecting regulatory genes involved in alterations of phenotype

    Transkingdom network reveals bacterial players associated with cervical cancer gene expression program

    Get PDF
    Cervical cancer is the fourth most common cancer in women worldwide with human papillomavirus (HPV) being the main cause the disease. Chromosomal amplifications have been identified as a source of upregulation for cervical cancer driver genes but cannot fully explain increased expression of immune genes in invasive carcinoma. Insight into additional factors that may tip the balance from immune tolerance of HPV to the elimination of the virus may lead to better diagnosis markers. We investigated whether microbiota affect molecular pathways in cervical carcinogenesis by performing microbiome analysis via sequencing 16S rRNA in tumor biopsies from 121 patients. While we detected a large number of intra-tumor taxa (289 operational taxonomic units (OTUs)), we focused on the 38 most abundantly represented microbes. To search for microbes and host genes potentially involved in the interaction, we reconstructed a transkingdom network by integrating a previously discovered cervical cancer gene expression network with our bacterial co-abundance network and employed bipartite betweenness centrality. The top ranked microbes were represented by the families Bacillaceae, Halobacteriaceae, and Prevotellaceae. While we could not define the first two families to the species level, Prevotellaceae was assigned to Prevotella bivia. By co-culturing a cervical cancer cell line with P. bivia, we confirmed that three out of the ten top predicted genes in the transkingdom network (lysosomal associated membrane protein 3 (LAMP3), STAT1, TAP1), all regulators of immunological pathways, were upregulated by this microorganism. Therefore, we propose that intra-tumor microbiota may contribute to cervical carcinogenesis through the induction of immune response drivers, including the well-known cancer gene LAMP3

    Differentially correlated genes in co-expression networks control phenotype transitions [version 1; referees: 1 approved, 2 approved with reservations]

    No full text
    Background: Co-expression networks are a tool widely used for analysis of “Big Data” in biology that can range from transcriptomes to proteomes, metabolomes and more recently even microbiomes. Several methods were proposed to answer biological questions interrogating these networks. Differential co-expression analysis is a recent approach that measures how gene interactions change when a biological system transitions from one state to another. Although the importance of differentially co-expressed genes to identify dysregulated pathways has been noted, their role in gene regulation is not well studied. Herein we investigated differentially co-expressed genes in a relatively simple mono-causal process (B lymphocyte deficiency) and in a complex multi-causal system (cervical cancer). Methods: Co-expression networks of B cell deficiency (Control and BcKO) were reconstructed using Pearson correlation coefficient for two mus musculus datasets: B10.A strain (12 normal, 12 BcKO) and BALB/c strain (10 normal, 10 BcKO). Co-expression networks of cervical cancer (normal and cancer) were reconstructed using local partial correlation method for five datasets (total of 64 normal, 148 cancer). Differentially correlated pairs were identified along with the location of their genes in BcKO and in cancer networks. Minimum Shortest Path and Bi-partite Betweenness Centrality where statistically evaluated for differentially co-expressed genes in corresponding networks.    Results: We show that in B cell deficiency the differentially co-expressed genes are highly enriched with immunoglobulin genes (causal genes). In cancer we found that differentially co-expressed genes act as “bottlenecks” rather than causal drivers with most flows that come from the key driver genes to the peripheral genes passing through differentially co-expressed genes. Using in vitro knockdown experiments for two out of 14 differentially co-expressed genes found in cervical cancer (FGFR2 and CACYBP), we showed that they play regulatory roles in cancer cell growth. Conclusion: Identifying differentially co-expressed genes in co-expression networks is an important tool in detecting regulatory genes involved in alterations of phenotype
    corecore