25,170 research outputs found
A Birkhoff connection between quantum circuits and linear classical reversible circuits
Birkhoff's theorem tells how any doubly stochastic matrix can be decomposed as a weighted sum of permutation matrices. Similar theorems on unitary matrices reveal a connection between quantum circuits and linear classical reversible circuits. It triggers the question whether a quantum computer can be regarded as a superposition of classical reversible computers
Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals
This paper gives an overview of recent work on three-dimensional (3D)
photonic crystals with a "full and complete" 3D photonic band gap. We review
five main aspects: 1) spontaneous emission inhibition, 2) spatial localization
of light within a tiny nanoscale volume (aka "a nanobox for light"), 3) the
introduction of a gain medium leading to thresholdless lasers, 4) breaking of
the weak-coupling approximation of cavity QED, both in the frequency and in the
time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations
by a 3D photonic bandgap. In addition, we list and evaluate all known photonic
crystal structures with a demonstrated 3D band gap.Comment: 21 pages, 6 figures, 2 tables, Chapter 8 in "Light Localisation and
Lasing: Random and Pseudorandom Photonic Structures", Eds. M. Ghulinyan and
L. Pavesi (Cambridge University Press, Cambridge, 2015, ISBN
978-1-107-03877-6
CLIC Background Studies and optimization of the innermost tracker elements
The harsh machine background at the Compact Linear Collider (CLIC) forms a
strong constraint on the design of the innermost part of the tracker. For the
CLIC Conceptual Design Report, the detector concepts developed for the
International Linear Collider (ILC) were adapted to the CLIC environment. We
present the new layout for the Vertex Detector and the Forward Tracking Disks
of the CLIC detector concepts, as well as the background levels in these
detectors. We also study the dependence of the background rates on technology
parameters like thickness of the active layer and detection threshold.Comment: 7 pages, 5 figures, LCWS 201
Method to make a single-step etch mask for 3D monolithic nanostructures
Current nanostructure fabrication by etching is usually limited to planar
structures as they are defined by a planar mask. The realisation of
three-dimensional (3D) nanostructures by etching requires technologies beyond
planar masks. We present a method to fabricate a 3D mask that allows to etch
three-dimensional monolithic nanostructures by using only CMOS-compatible
processes. The mask is written in a hard-mask layer that is deposited on two
adjacent inclined surfaces of a Si wafer. By projecting in single step two
different 2D patterns within one 3D mask on the two inclined surfaces, the
mutual alignment between the patterns is ensured. Thereby after the mask
pattern is defined, the etching of deep pores in two oblique directions yields
a three-dimensional structure in Si. As a proof of concept we demonstrate 3D
mask fabrication for three-dimensional diamond-like photonic band gap crystals
in silicon. The fabricated crystals reveal a broad stop gap in optical
reflectivity measurements. We propose how 3D nanostructures with five different
Bravais lattices can be realised, namely cubic, tetragonal, orthorhombic,
monoclinic, and hexagonal, and demonstrate a mask for a 3D hexagonal crystal.
We also demonstrate the mask for a diamond-structure crystal with a 3D array of
cavities. In general, the 2D patterns for the different surfaces can be
completely independent and still be in perfect mutual alignment. Indeed, we
observe an alignment accuracy of better than 3.0 nm between the 2D mask
patterns on the inclined surfaces, which permits one to etch well-defined
monolithic 3D nanostructures.Comment: 18 pages, 10 figure
Design of a 3D photonic band gap cavity in a diamond-like inverse woodpile photonic crystal
We theoretically investigate the design of cavities in a three-dimensional
(3D) inverse woodpile photonic crystal. This class of cubic diamond-like
crystals has a very broad photonic band gap and consists of two perpendicular
arrays of pores with a rectangular structure. The point defect that acts as a
cavity is centred on the intersection of two intersecting perpendicular pores
with a radius that differs from the ones in the bulk of the crystal. We have
performed supercell bandstructure calculations with up to
unit cells. We find that up to five isolated and dispersionless bands appear
within the 3D photonic band gap. For each isolated band, the electric-field
energy is localized in a volume centred on the point defect, hence the point
defect acts as a 3D photonic band gap cavity. The mode volume of the cavities
resonances is as small as 0.8 (resonance wavelength cubed),
indicating a strong confinement of the light. By varying the radius of the
defect pores we found that only donor-like resonances appear for smaller defect
radius, whereas no acceptor-like resonances appear for greater defect radius.
From a 3D plot of the distribution of the electric-field energy density we
conclude that peaks of energy found in sharp edges situated at the point
defect, similar to how electrons collect at such features. This is different
from what is observed for cavities in non-inverted woodpile structures. Since
inverse woodpile crystals can be fabricated from silicon by CMOS-compatible
means, we project that single cavities and even cavity arrays can be realized,
for wavelength ranges compatible with telecommunication windows in the near
infrared.Comment: 11 figure
Extracting the top-quark running mass using +1-jet events produced at the Large Hadron Collider
We present the calculation of the next-to-leading order QCD corrections for
top-quark pair production in association with an additional jet at hadron
colliders, using the modified minimal subtraction scheme to renormalize the
top-quark mass. The results are compared to measurements at the Large Hadron
Collider run I. In particular, we determine the top-quark running mass from a
fit of the theoretical results presented here to the LHC data
The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitised solar cells
Improving the efficiency of p-type dye-sensitized solar cells (DSCs) is an important part of the development of high performance tandem DSCs. The optimization of the conversion efficiency of p-DSCs could make a considerable contribution in the improvement of solar cells at a molecular level. Nickel oxide is the most widely used material in p-DSCs, due to its ease of preparation, chemical and structural stability, and electrical properties. However, improvement of the quality and conductivity of NiO based photocathodes needs to be achieved to bring further improvements to the solar cell efficiency. The subject of this review is to consider the effect of the preparation of NiO surfaces on their efficiency as photocathodes. (C) 2015 Elsevier B.V. All rights reserved
Geiger-Mode Avalanche Photodiodes in Particle Detection
It is well known that avalanche photodiodes operated in the Geiger mode above
the breakdown voltage offer a virtually infinite sensitivity and time accuracy
in the picosecond range that can be used for single photon detection. However,
their performance in particle detection remains still unexplored. In this
contribution, we are going to expose the different steps that we have taken in
order to prove the efficiency of Geiger mode avalanche photodiodes in the
aforementioned field. In particular, we will present an array of pixels of
1mmx1mm fabricated with a standard CMOS technology for characterization in a
test beam.Comment: 7 pages, 2 figures, Proceedings of LCWS1
- …