129 research outputs found
The LHCb experiment: status and recent results
The LHCb experiment is one of the major research projects at the Large Hadron
Collider. Its acceptance and instrumentation is optimised to perform
high-precision studies of flavour physics and particle production in a unique
kinematic range at unprecedented collision energies. Using large data samples
accumulated in the years 2010-2012, the LHCb collaboration has conducted a
series of measurements providing a sensitive test of the Standard Model and
strengthening our knowledge of flavour physics, QCD and electroweak processes.
The status of the experiment and some of its recent results are presented here.Comment: 8 pages, 12 figure
Observation of diffraction with the CMS experiment at the Large Hadron Collider
A clear evidence of inclusive diffraction observed by the CMS detector at the
Large Hadron Collider in minimum bias events at 0.9 TeV, 2.36 TeV is
presented. The observed diffractive signal is dominated by inclusive
single-diffractive dissociation and can be identified by the presence of a
Large Rapidity Gap that extends over the forward region of the CMS detector. A
comparison of the data with Monte Carlo predictions provided by PYTHIA6 and
PHOJET generators is given. In addition, first observation of the
single-diffractive production of di-jets at 7 TeV is presented.Comment: 7 pages, 9 figure
Measurement of the forward energy flow in pp collisions at sqrt{s}=7 TeV with the LHCb detector
We present the results on the energy flow measured with minimum-bias data
collected by the LHCb experiment in pp collisions at sqrt{s}=7 TeV for
inclusive minimum-bias interactions, hard scattering processes and events with
enhanced or suppressed diffractive contribution. The measurements are performed
in the pseudorapidity range 1.9<\eta<4.9, which corresponds to the main
detector acceptance of the LHCb spectrometer. The data are compared to
predictions given by the PYTHIA-based and cosmic-ray Monte Carlo event
generators, which model the underlying event activity in different ways
Measurement of CP violation parameters and polarisation fractions in decays
The first measurement of asymmetries in the decay and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of and . Together with constraints from , the results are used to constrain additional contributions due to penguin diagrams in the -violating phase , measured through decays to charmonium.The first measurement of CP asymmetries in the decay and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of 3.0 fb^{−}^{1} of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Together with constraints from B → J/ψ ρ, the results are used to constrain additional contributions due to penguin diagrams in the CP -violating phase ϕ , measured through B decays to charmonium.The first measurement of asymmetries in the decay and an updated measurement of its branching fraction and polarisation fractions are presented. The results are obtained using data corresponding to an integrated luminosity of of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of and . Together with constraints from , the results are used to constrain additional contributions due to penguin diagrams in the -violating phase , measured through decays to charmonium
A study of CP violation in B-+/- -> DK +/- and B-+/- -> D pi(+/-) decays with D -> (KSK +/-)-K-0 pi(-/+) final states
A first study of CP violation in the decay modes and , where labels a or meson and labels a or meson, is performed. The analysis uses the LHCb data set collected in collisions, corresponding to an integrated luminosity of 3 fb. The analysis is sensitive to the CP-violating CKM phase through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of using other decay modes
Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state
A search for the rare decays and is performed in a data set corresponding to an integrated luminosity of 3.0 fb collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/ and with muon pairs that do not originate from a resonance are considered. The first observation of the decay and the first evidence of the decay are obtained and the branching fractions are measured to be and , where the third uncertainty is due to the branching fraction of the decay , used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays and is performed in a data set corresponding to an integrated luminosity of 3.0 fb collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/ and with muon pairs that do not originate from a resonance are considered. The first observation of the decay and the first evidence of the decay are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be and , where the third uncertainty is due to the branching fraction of the decay , used as a normalisation
Measurement of the CP-violating phase in decays and limits on penguin effects
Time-dependent CP violation is measured in the channel for each resonant final state using data collected with an integrated luminosity of 3.0 fb in collisions using the LHCb detector. The final state with the largest rate, , is used to measure the CP-violating angle to be . This result can be used to limit the size of penguin amplitude contributions to CP violation measurements in, for example, decays. Assuming approximate SU(3) flavour symmetry and neglecting higher order diagrams, the shift in the CP-violating phase is limited to be within the interval [, +] at 95% confidence level. Changes to the limit due to SU(3) symmetry breaking effects are also discussed.Time-dependent CP violation is measured in the B(−−−)0→J/ψπ+π− channel for each π+π− resonant final state using data collected with an integrated luminosity of 3.0 fb −1 in pp collisions using the LHCb detector. The final state with the largest rate, J/ψρ0(770) , is used to measure the CP -violating angle 2βeff to be (41.7±9.6−6.3+2.8)° . This result can be used to limit the size of penguin amplitude contributions to CP violation measurements in, for example, B(−−−)s0→J/ψϕ decays. Assuming approximate SU(3) flavour symmetry and neglecting higher order diagrams, the shift in the CP -violating phase ϕs is limited to be within the interval [ −1.05°,+1.18° ] at 95% confidence level. Changes to the limit due to SU(3) symmetry breaking effects are also discussed.Time-dependent CP violation is measured in the channel for each resonant final state using data collected with an integrated luminosity of 3.0 fb in collisions using the LHCb detector. The final state with the largest rate, , is used to measure the CP-violating angle to be . This result can be used to limit the size of penguin amplitude contributions to CP violation measurements in, for example, decays. Assuming approximate SU(3) flavour symmetry and neglecting higher order diagrams, the shift in the CP-violating phase is limited to be within the interval [, +] at 95% confidence level. Changes to the limit due to SU(3) symmetry breaking effects are also discussed.Time-dependent CP violation is measured in the B0→J/ψπ+π− channel for each π+π− resonant final state using data collected with an integrated luminosity of 3.0 fb −1 in pp collisions using the LHCb detector. The final state with the largest rate, J/ψρ0(770) , is used to measure the CP -violating angle 2βeff to be (41.7±9.6−6.3+2.8)° . This result can be used to limit the size of penguin amplitude contributions to CP violation measurements in, for example, Bs0→J/ψϕ decays. Assuming approximate SU(3) flavour symmetry and neglecting higher order diagrams, the shift in the CP -violating phase ϕs is limited to be within the interval [ −1.05°,+1.18° ] at 95% confidence level. Changes to the limit due to SU(3) symmetry breaking effects are also discussed
Study of forward Z + jet production in pp collisions at √s=7 TeV
A measurement of the +jet production cross-section in collisions at a centre-of-mass energy TeV is presented. The analysis is based on an integrated luminosity of recorded by the LHCb experiment. Results are shown with two jet transverse momentum thresholds, 10 and 20 GeV, for both the overall cross-section within the fiducial volume, and for six differential cross-section measurements. The fiducial volume requires that both the jet and the muons from the Z boson decay are produced in the forward direction (). The results show good agreement with theoretical predictions at the second-order expansion in the coupling of the strong interaction.A measurement of the +jet production cross-section in collisions at a centre-of-mass energy TeV is presented. The analysis is based on an integrated luminosity of recorded by the LHCb experiment. Results are shown with two jet transverse momentum thresholds, 10 and 20 GeV, for both the overall cross-section within the fiducial volume, and for six differential cross-section measurements. The fiducial volume requires that both the jet and the muons from the Z boson decay are produced in the forward direction (). The results show good agreement with theoretical predictions at the second-order expansion in the coupling of the strong interaction
Search for the lepton flavour violating decay tau(-) -> mu(-)mu(+)mu(-)
A search for the lepton flavour violating decay is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb of proton-proton collisions at a centre-of-mass energy of 7 TeV and 2.0 fb at 8 TeV. No evidence is found for a signal, and a limit is set at 90% confidence level on the branching fraction, .A search for the lepton flavour violating decay τ → μ μ μ is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb of proton-proton collisions at a centre-of-mass energy of 7 TeV and 2.0 fb at 8 TeV. No evidence is found for a signal, and a limit is set at 90% confidence level on the branching fraction, .A search for the lepton flavour violating decay is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of of proton-proton collisions at a centre-of-mass energy of and at . No evidence is found for a signal, and a limit is set at confidence level on the branching fraction,
- …