43 research outputs found

    Positive trace polynomials and the universal Procesi-Schacher conjecture

    Full text link
    Positivstellensatz is a fundamental result in real algebraic geometry providing algebraic certificates for positivity of polynomials on semialgebraic sets. In this article Positivstellens\"atze for trace polynomials positive on semialgebraic sets of n×nn\times n matrices are provided. A Krivine-Stengle-type Positivstellensatz is proved characterizing trace polynomials nonnegative on a general semialgebraic set KK using weighted sums of hermitian squares with denominators. The weights in these certificates are obtained from generators of KK and traces of hermitian squares. For compact semialgebraic sets KK Schm\"udgen- and Putinar-type Positivstellens\"atze are obtained: every trace polynomial positive on KK has a sum of hermitian squares decomposition with weights and without denominators. The methods employed are inspired by invariant theory, classical real algebraic geometry and functional analysis. Procesi and Schacher in 1976 developed a theory of orderings and positivity on central simple algebras with involution and posed a Hilbert's 17th problem for a universal central simple algebra of degree nn: is every totally positive element a sum of hermitian squares? They gave an affirmative answer for n=2n=2. In this paper a negative answer for n=3n=3 is presented. Consequently, including traces of hermitian squares as weights in the Positivstellens\"atze is indispensable

    Dimension-free matricial Nullstellens\"atze for noncommutative polynomials

    Full text link
    Hilbert's Nullstellensatz is one of the most fundamental correspondences between algebra and geometry, and has inspired a plethora of noncommutative analogs. In last two decades, there has been an increased interest in understanding vanishing sets of polynomials in several matrix variables without restricting the matrix size, prompted by developments in noncommutative function theory, control systems, operator algebras, and quantum information theory. The emerging results vary according to the interpretation of what vanishing means. For example, given a collection of noncommutative polynomials, one can consider all matrix tuples at which the values of these polynomials are all zero, singular, have common kernel, or have zero trace. This survey reviews Nullstellens\"atze for the above types of vanishing sets, and identifies their structural counterparts in the free algebra.Comment: A surve

    Constant-sized self-tests for maximally entangled states and single projective measurements

    Full text link
    Self-testing is a powerful certification of quantum systems relying on measured, classical statistics. This paper considers self-testing in bipartite Bell scenarios with small number of inputs and outputs, but with quantum states and measurements of arbitrarily large dimension. The contributions are twofold. Firstly, it is shown that every maximally entangled state can be self-tested with four binary measurements per party. This result extends the earlier work of Man\v{c}inska-Prakash-Schafhauser (2021), which applies to maximally entangled states of odd dimensions only. Secondly, it is shown that every single binary projective measurement can be self-tested with five binary measurements per party. A similar statement holds for self-testing of projective measurements with more than two outputs. These results are enabled by the representation theory of quadruples of projections that add to a scalar multiple of the identity. Structure of irreducible representations, analysis of their spectral features and post-hoc self-testing are the primary methods for constructing the new self-tests with small number of inputs and outputs

    Geometry of free loci and factorization of noncommutative polynomials

    Get PDF
    The free singularity locus of a noncommutative polynomial f is defined to be the sequence Zn(f)={XMng:detf(X)=0}Z_n(f)=\{X\in M_n^g : \det f(X)=0\} of hypersurfaces. The main theorem of this article shows that f is irreducible if and only if Zn(f)Z_n(f) is eventually irreducible. A key step in the proof is an irreducibility result for linear pencils. Apart from its consequences to factorization in a free algebra, the paper also discusses its applications to invariant subspaces in perturbation theory and linear matrix inequalities in real algebraic geometry.Comment: v2: 32 pages, includes a table of content
    corecore