6,973 research outputs found
Multigap RPC time resolution to 511 keV annihilation photons
The time resolution of Multigap Resistive Plate Counters (MRPCs) to keV
gamma rays has been investigated using a Na source and four detectors.
The MRPCs time resolution has been derived from the Time-of-Flight information,
measured from pairs of space correlated triggered events. A GEANT4 simulation
has been performed to analyze possible setup contributions and to support
experimental results. A time resolution (FWHM) of ps and ps has
been measured for a single MRPC with four m gas gaps by considering
respectively one and two independent pairs of detectors.Comment: 25 pages, 14 figure
Transcriptome dynamics in the asexual cycle of the chordate Botryllus schlosseri
Background: We performed an analysis of the transcriptome during the blastogenesis of the chordate Botryllus
schlosseri, focusing in particular on genes involved in cell death by apoptosis. The tunicate B. schlosseri is an ascidian
forming colonies characterized by the coexistence of three blastogenetic generations: filter-feeding adults, buds on
adults, and budlets on buds. Cyclically, adult tissues undergo apoptosis and are progressively resorbed and replaced
by their buds originated by asexual reproduction. This is a feature of colonial tunicates, the only known chordates
that can reproduce asexually.
Results: Thanks to a newly developed web-based platform (http://botryllus.cribi.unipd.it), we compared the
transcriptomes of the mid-cycle, the pre-take-over, and the take-over phases of the colonial blastogenetic
cycle. The platform is equipped with programs for comparative analysis and allows to select the statistical
stringency. We enriched the genome annotation with 11,337 new genes; 581 transcripts were resolved as
complete open reading frames, translated in silico into amino acid sequences and then aligned onto the
non-redundant sequence database. Significant differentially expressed genes were classified within the gene
ontology categories. Among them, we recognized genes involved in apoptosis activation, de-activation, and
regulation.
Conclusions: With the current work, we contributed to the improvement of the first released B. schlosseri
genome assembly and offer an overview of the transcriptome changes during the blastogenetic cycle,
showing up- and down-regulated genes. These results are important for the comprehension of the events
underlying colony growth and regression, cell proliferation, colony homeostasis, and competition among
different generations
A global gene evolution analysis on Vibrionaceae family using phylogenetic profile
<p>Abstract</p> <p>Background</p> <p><it>Vibrionaceae </it>represent a significant portion of the cultivable heterotrophic sea bacteria; they strongly affect nutrient cycling and some species are devastating pathogens.</p> <p>In this work we propose an improved phylogenetic profile analysis on 14 <it>Vibrionaceae </it>genomes, to study the evolution of this family on the basis of gene content.</p> <p>The phylogenetic profile is based on the observation that genes involved in the same process (e.g. metabolic pathway or structural complex) tend to be concurrently present or absent within different genomes. This allows the prediction of hypothetical functions on the basis of a shared phylogenetic profiles. Moreover this approach is useful to identify putative laterally transferred elements on the basis of their presence on distantly phylogenetically related bacteria.</p> <p>Results</p> <p><it>Vibrionaceae </it>ORFs were aligned against all the available bacterial proteomes. Phylogenetic profile is defined as an array of distances, based on aminoacid substitution matrixes, from single genes to all their orthologues. Final phylogenetic profiles, derived from non-redundant list of all ORFs, was defined as the median of all the profiles belonging to the cluster. The resulting phylogenetic profiles matrix contains gene clusters on the rows and organisms on the columns.</p> <p>Cluster analysis identified groups of "core genes" with a widespread high similarity across all the organisms and several clusters that contain genes homologous only to a limited set of organisms. On each of these clusters, COG class enrichment has been calculated. The analysis reveals that clusters of core genes have the highest number of enriched classes, while the others are enriched just for few of them like DNA replication, recombination and repair.</p> <p>Conclusion</p> <p>We found that mobile elements have heterogeneous profiles not only across the entire set of organisms, but also within <it>Vibrionaceae</it>; this confirms their great influence on bacteria evolution even inside the same family. Furthermore, several hypothetical proteins highly correlate with mobile elements profiles suggesting a possible horizontal transfer mechanism for the evolution of these genes. Finally, we suggested the putative role of some ORFs having an unknown function on the basis of their phylogenetic profile similarity to well characterized genes.</p
MIDAW: a web tool for statistical analysis of microarray data
MIDAW (microarray data analysis web tool) is a web interface integrating a series of statistical algorithms that can be used for processing and interpretation of microarray data. MIDAW consists of two main sections: data normalization and data analysis. In the normalization phase the simultaneous processing of several experiments with background correction, global and local mean and variance normalization are carried out. The data analysis section allows graphical display of expression data for descriptive purposes, estimation of missing values, reduction of data dimension, discriminant analysis and identification of marker genes. The statistical results are organized in dynamic web pages and tables, where the transcript/gene probes contained in a specific microarray platform can be linked (according to user choice) to external databases (GenBank, Entrez Gene, UniGene). Tutorial files help the user throughout the statistical analysis to ensure that the forms are filled out correctly. MIDAW has been developed using Perl and PHP and it uses R/Bioconductor languages and routines. MIDAW is GPL licensed and freely accessible at . Perl and PHP source codes are available from the authors upon request
Inhibition of Virulence-Related Traits in Pseudomonas syringae pv. actinidiae by Gunpowder Green Tea Extracts
Green tea is a widely-consumed healthy drink produced from the leaves of Camellia sinensis. It is renowned for its antioxidant and anticarcinogenic properties, but also displays significant antimicrobial activity against numerous human pathogens. Here we analyzed the antimicrobial activity of Gunpowder green tea against Pseudomonas syringae pv. actinidiae (Psa), the agent that causes kiwifruit bacterial canker. At the phenotypic level, tea extracts strongly inhibited Psa growth and swimming motility, suggesting it could reduce Psa epiphytic survival during plant colonization. The loss of bacterial virulence-related traits following treatment with tea extracts was also investigated by large-scale transcriptome analysis, which confirmed the in vitro phenotypes and revealed the induction of adaptive responses in the treated bacteria allowing them to cope with iron deficiency and oxidative stress. Such molecular changes may account for the ability of Gunpowder green tea to protect kiwifruit against Psa infection
The leaf transcriptome of fennel (Foeniculum vulgare Mill.) enables characterization of the t-anethole pathway and the discovery of microsatellites and single-nucleotide variants
Fennel is a plant species of both agronomic and pharmaceutical interest that is characterized by a shortage of genetic and molecular data. Taking advantage of NGS technology, we sequenced and annotated the first fennel leaf transcriptome using material from four different lines and two different bioinformatic approaches: de novo and genome-guided transcriptome assembly. A reference transcriptome for assembly was produced by combining these two approaches. Among the 79,263 transcripts obtained, 47,775 were annotated using BLASTX analysis performed against the NR protein database subset with 11,853 transcripts representing putative full-length CDS. Bioinformatic analyses revealed 1,011 transcripts encoding transcription factors, mainly from the BHLH, MYB-related, C2H2, MYB, and ERF families, and 6,411 EST-SSR regions. Single-nucleotide variants of SNPs and indels were identified among the 8 samples at a frequency of 0.5 and 0.04 variants per Kb, respectively. Finally, the assembled transcripts were screened to identify genes related to the biosynthesis of t-anethole, a compound well-known for its nutraceutical and medical properties. For each of the 11 genes encoding structural enzymes in the t-anethole biosynthetic pathway, we identified at least one transcript showing a significant match. Overall, our work represents a treasure trove of information exploitable both for marker-assisted breeding and for in-depth studies on thousands of genes, including those involved in t-anethole biosynthesis
QueryOR: a comprehensive web platform for genetic variant analysis and prioritization
Background: Whole genome and exome sequencing are contributing to the extraordinary progress in the study of
human genetic variants. In this fast developing field, appropriate and easily accessible tools are required to facilitate
data analysis.
Results: Here we describe QueryOR, a web platform suitable for searching among known candidate genes as well
as for finding novel gene-disease associations. QueryOR combines several innovative features that make it comprehensive,
flexible and easy to use. Instead of being designed on specific datasets, it works on a general XML schema specifying
formats and criteria of each data source. Thanks to this flexibility, new criteria can be easily added for future
expansion. Currently, up to 70 user-selectable criteria are available, including a wide range of gene and variant features.
Moreover, rather than progressively discarding variants taking one criterion at a time, the prioritization is achieved by a
global positive selection process that considers all transcript isoforms, thus producing reliable results. QueryOR is easy
to use and its intuitive interface allows to handle different kinds of inheritance as well as features related to sharing
variants in different patients. QueryOR is suitable for investigating single patients, families or cohorts.
Conclusions: QueryOR is a comprehensive and flexible web platform eligible for an easy user-driven variant
prioritization. It is freely available for academic institutions at http://queryor.cribi.unipd.it/
- âŠ