21 research outputs found

    Biofuels Produced by Fischer-Tropsch Synthesis over Silica-supported Iron-Based Catalysts Prepared by Autocombustion Method

    Get PDF
    The purpose of this study was to evaluate the effect of different silica types on iron (Fe)-based catalysts containing copper and potassium prepared by autocombustion for direct use in Fischer-Tropsch Synthesis (FTS) without a reduction step. The catalysts were characterized through nitrogen (N2) adsorption, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The FTS performance of each catalyst was evaluated in a fixed-bed reactor at 300 ◦C, 1.0 MPa, a catalyst weight to volume flow rate of 10 gcat h/mol and a hydrogen (H2)/carbon monoxide (CO) molar ratio of 1. The pore size of the silica had an important influence on the formation of the Fe active phases and subsequent FTS activity. The presence of iron carbide (FexC), which is known to be one of the active Fe phases, was demonstrated by the XRD and TEM analyses. Larger crystallite sizes in the large pores were much easier to accommodate FexC than the smaller crystallite sizes in the small pores. The Fe-based catalysts supported on the silica with the largest pores gave the highest CO conversion level at 86.5%, with a 28.1% C2–4 selectivity and 17.3% C5+ selectivity under these operating conditions. Interestingly, this is an alternative approach to synthesize nanostructured metallic catalysts on silica and to produce clean biofuel for the fuel industry and transportation

    Production of Smokeless Briquette Charcoals from Wet Cake Waste of Ethanol Industry

    Get PDF
    The main aim of this research was to investigate proximate analysis and heating value of wet cake waste from ethanol industry to be used as alternative fuels by carbonization at 400, 450, 500 and 550 degrees, vary times 30, 45, 60 and 90 minutes in oxygen-limited conditions. The maximum yields and fixed carbon volume were observed to be evolving at 500c, 60 minutes. At condition has 1.17% moisture, 34.42% ash, 16.57% volatile matter and 47.84% fixed carbon respectively.Then bring wet cake waste to briquette charcoals by hot and cold compressed for utilization in industry and commercial. Found that heating value of hot and cold compressed were 20,257.25 KJ/kg and 24,790.21 KJ/kg,which are higher heating value after carbonization.There are also cost-benefit and cost-effectiveness analysis, hot compressed cost 0.17 baht/piece, total production at breakeven 704,225 pieces and payback period of 0.18 years, while cold compressed cost 0.3175 baht/piece, total production at breakeven 341,297 pieces and payback period of 0.17 years

    การแตกตัวด้วยความร้อนเชิงตัวเร่งปฏิกิริยาของน้ำมันสบู่ดำไปเป็นเชื้อเพลิงเหลวบน HZSM-5 (THERMAL CATALYTIC CRACKING OF JATROPHA OIL TO LIQUID FUELS OVER HZSM-5)

    No full text
    งานวิจัยนี้มีจุดมุ่งหมายที่จะศึกษาปฏิกิริยาการแตกตัวเชิงตัวเร่งของน้ำมันสบู่ดำไปเป็นเชื้อเพลิงเหลวด้วย HZSM-5 บนเครื่องปฏิกรณ์แบบแบตซ์ขนาดเล็กเพื่อศึกษาอิทธิพลของตัวแปรต่างๆ ที่ส่งผลต่อการเปลี่ยนไปเป็นแนฟทา โดยออกแบบการทดลองเชิงวิศวกรรมแบบสองระดับเพื่อหาภาวะที่เหมาะสมต่อการเปลี่ยนไปเป็นผลิตภัณฑ์น้ำมัน ใช้สภาวะการทดลองที่อุณหภูมิระหว่าง 390 ถึง 440 องศาเซลเซียส เวลาในการทำปฏิกิริยา 30 ถึง 60 นาที ใช้ตัวเร่งปฏิกิริยา HZSM-5 ร้อยละ 2.5 ถึง 10 โดยน้ำหนัก ความดันแก๊สไฮโดรเจนเริ่มต้น 100 ปอนด์ต่อตารางนิ้ว ผลิตภัณฑ์น้ำมันที่ได้นำมาวิเคราะห์ด้วยเครื่องแก๊สโครมาโตรกราฟจำลองการกลั่น ผลการทดลองโดยการใช้โปรแกรม design expert ที่ใช้คำนวณหาภาวะที่เหมาะสมพบว่า ที่อุณหภูมิ 426 องศาเซลเซียส เวลาในการทำการทดลอง 56 นาที โดยใช้ตัวเร่งปฏิกิริยา HZSM-5 ร้อยละ 6.25 โดยน้ำหนัก เป็นภาวะที่เหมาะสมต่อการเปลี่ยนน้ำมันสบู่ดำไปเป็นแนฟทา โดยให้ผลิตภัณฑ์เป็นน้ำมันถึง 58.62% โดยน้ำหนัก และมีองค์ประกอบเป็นแนฟทา 40.60% โดยน้ำหนัก แสดงให้เห็นว่าปัจจัยที่ส่งผลต่อการเปลี่ยนน้ำมันสบู่ดำไปเป็นน้ำมันเชื้อเพลิง ประกอบด้วย อุณหภูมิ เวลา และปริมาณของตัวเร่งปฏิกิริยา HZSM-5 และเมื่อทำการทดลองโดยใช้ภาวะที่ได้จากการคำนวณโดยซอฟต์แวร์ก็ให้ผลการทดลองที่ไม่แตกต่างกันอย่างมีนัยสำคัญคำสำคัญ: การแตกตัวด้วยตัวเร่งปฏิกิริยา HZSM-5 น้ำมันสบู่ดำThis research aimed to study the catalytic cracking of Jatropha oil to liquid fuels with HZSM-5. A microreactor was used for the study of the effect of variables of liquid fuel products especially naphtha by using a two level factorial design of experiment to determine the optimum condition. The operating condition was the temperature between 390°C and 440°C, the reaction time from 30 minutes to 60 minutes and the percentage by weight of HZSM-5 between 2.5 and 10 at initial hydrogen pressure of 100 lb/in2. The liquid products were analyzed by simulated distillation gas chromatograph. Based on the analysis from a design-expert program to determine the appropriate condition of experiment, it was found that the reaction temperature of 426°C, the reaction time of 56 minutes by using 6.35 percent by weight of HZSM-5 was the best condition that gave the highest yield of naphtha. The oil yield was 58.62 percent by weight, and the naphtha yield was 40.60 percent by weight. The result also showed that 3 factors, namely temperature, reaction time and percentage by weight of HZSM-5 significantly affected the oil yield. Both the result derived from the conversion and the fraction of liquid fuels from the experiment and the result calculated from the program concluded similar outcome insignificantly.Keywords: Catalytic cracking, HZSM-5, Jatropha oi

    Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm

    No full text
    This study was conducted to assess the economic feasibility of electricity generation from biogas in small pig farms with and without the H2S removal prior to biogas utilisation. The 2% potassium iodide (KI) impregnated activated carbon selected as H2S adsorbent was introduced to a biogas-to-electricity generation system in a small pig farm in Thailand as a case study. With the average inlet H2S concentration of about 2400 ppm to the adsorption unit, the H2S removal efficiency could reach 100% with the adsorption capacity of 0.062 kg of H2S/kg of adsorbent. Under the reference scenario (i.e., 45% subsidy on digester installation and fixed electricity price at 0.06 Euro/kWh) and based on an assumption that the biogas was fully utilised for electricity generation in the system, the payback period for the system without H2S removal was about 4 years. With H2S removal, the payback period was within the economic life of digester but almost twice that of the case without H2S removal. The impact of electricity price could be clearly seen for the case of treated biogas. At the electricity price fixed at 0.07 Euro/kWh, the payback period for the case of treated biogas was reduced to about 5.5 years, with a trend to decrease at higher electricity prices. For both treated and untreated biogas, the governmental subsidy was the important factor determining the economics of the biogas-to-electricity systems. Without subsidy, the payback period increased to almost 7 years and about 11 years for the case of untreated and treated biogas, respectively, at the reference electricity price. Although the H2S removal added high operation cost to the system, it is still highly recommended not only for preventing engine corrosion but also for the environment benefit in which air pollution by H2S/SO2 emission and impact on human health could be potentially reduced.Biogas H2S Activated carbon Electricity generation

    Reformage catalytique du methane a la vapeur en lit fluidise : etude cinetique et modelisation du reacteur

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    A Novel, Low Temperature Synthesis Method of Dimethyl Ether Over Cu-Zn Catalyst Based on Self-Catalysis Effect of Methanol

    No full text
    Abstract A new DME synthesis route from syngas at a relatively low temperature (443 K) has been developed for the first time by the combination of a conventional DME synthesis catalyst (Cu/ZnO:HZSM-5 catalyst) with methanol as a catalytic solvent. The addition of methanol to the reaction system is the key to the success of DME synthesis at this temperature. Indeed, a CO conversion of 29 and 43% with a DME selectivity of 69 and 68% were achieved at 443 or 453 K, respectively, and 4 MPa, when methanol was used as a catalytic solvent. Importantly, no other byproducts including methanol and hydrocarbons were observed in the DME product attained, suggesting no significant subsequent purification stages. Assuming no scale up problems, this process potentially provides a high purity of DME with less energy consumption, and so offers an opportunity for the economically viable future sustainable production of DME

    Direct conversion of simulated propene-rich bio-syngas to liquid iso-hydrocarbons via FT-oligomerization integrated catalytic process

    No full text
    The bio-syngas formed from the catalytic cracking of bio-oil include two types of useful components which are light olefin and H-2, CO. The integration of FTS and olefinic polymerization seems potential way for the production of hydrocarbon bio-fuels while fully utilizing the olefin-rich bio-syngas. This work aimed to develop an integrated process for the production of liquid hydrocarbons directly from the olefin-rich bio-syngas through a one-stage process, which included the synthesis of liquid hydrocarbons via the oligomerization of light olefin over HZSM-5 along with the FT (Fischer-Tropsch) synthesis of H-2, CO over FeMn catalyst. A series of integration configuration composed of Fe-based catalyst (FeMn) and acidic zeolite (HZSM-5) were investigated, it was found that the undesired hydrogenation of lower olefin on the nearby metal active site seems greatly affected the yield of C5 +. More significantly, the proximity of the two active components plays a crucial role in suppressing the undesired hydrogenation reaction and contributing to the high selectivity of liquid hydrocarbons. The optimal catalytic performance yields a high selectivity to gasoline-range hydrocarbons (87.3%) with excellent low olefin hydrogenation selectivity (7.4%). Meanwhile, the obtained gasoline-range hydrocarbon showed high degree of isomerization. The integrated transformation process potentially provides an alternative way for the production of gasoline range isomerized hydrocarbon fuels using olefin-rich bio-syngas
    corecore