584 research outputs found
Characterization of dynamical regimes and entanglement sudden death in a microcavity quantum - dot system
The relation between the dynamical regimes (weak and strong coupling) and
entanglement for a dissipative quantum - dot microcavity system is studied. In
the framework of a phenomenological temperature model an analysis in both,
temporal (population dynamics) and frequency domain (photoluminescence) is
carried out in order to identify the associated dynamical behavior. The Wigner
function and concurrence are employed to quantify the entanglement in each
regime. We find that sudden death of entanglement is a typical characteristic
of the strong coupling regime.Comment: To appear in Journal of Physics: Condensed Matte
Photon emission as a source of coherent behaviour of polaritons
We show that the combined effect of photon emission and Coulomb interactions
may drive an exciton-polariton system towards a dynamical coherent state, even
without phonon thermalization or any other relaxation mechanism. Exact
diagonalization results for a finite system (a multilevel quantum dot
interacting with the lowest energy photon mode of a microcavity) are presented
in support to this statement
Learning-associated gamma-band phase-locking of action-outcome selective neurons in orbitofrontal cortex
Gamma oscillations (30-100 Hz) correlate to a variety of neural functions, including sensory processing, attention, and action selection. However, they have barely been studied in relation to emotional processing and valuation of sensory signals and actions. We conducted multineuron and local field potential recordings in the orbitofrontal cortex (OFC) of rats performing a task in which they made go or no-go decisions based on two olfactory stimuli predicting appetitive or aversive outcomes. Gamma power was strongest during the late phase of odor sampling, just before go/no-go movement, and increased with behavioral learning. Learning speed was correlated to the slope of the gamma power increment. Spikes of OFC neurons were consistently timed to the gamma rhythm during odor sampling, regardless of the associated outcome. However, only a specific subgroup of cells showed consistent phase timing. These cells showed action-outcome selective activity, not during stimulus sampling but during subsequent movement responses. During sampling, this subgroup displayed a suppression in firing rate but a concurrent increment in the consistency of spike timing relative to gamma oscillations. In addition to gamma rhythm, OFC field potentials were characterized by theta oscillations during odor sampling. Neurons phase-locked to either theta or gamma rhythms but not to both, suggesting that they become associated with separate rhythmic networks involving OFC. Altogether, these results suggest that OFC gamma-band synchronization reflects inhibitory control over a subpopulation of neurons that express information about the emotional valence of actions after a motor decision, which suggests a novel mechanism for response inhibition
Polariton Lasing in a Multilevel Quantum Dot Strongly Coupled To a Single Photon Mode
We present an approximate analytic expression for the photoluminescence
spectral function of a model polariton system, which describes a quantum dot,
with a finite number of fermionic levels, strongly interacting with the lowest
photon mode of a pillar microcavity. Energy eigenvalues and wavefunctions of
the electron-hole-photon system are obtained by numerically diagonalizing the
Hamiltonian. Pumping and photon losses through the cavity mirrors are described
with a master equation, which is solved in order to determine the stationary
density matrix. The photon first-order correlation function, from which the
spectral function is found, is computed with the help of the Quantum Regression
Theorem. The spectral function qualitatively describes the polariton lasing
regime in the model, corresponding to pumping rates two orders of magnitude
lower than those needed for ordinary (photon) lasing. The second-order
coherence functions for the photon and the electron-hole subsystems are
computed as functions of the pumping rate.Comment: version accepted in Phys. Rev.
Control of polarization and mode mapping of small volume high Q micropillars
We show that the polarization of the emission of a single quantum dot embedded within a microcavity pillar of elliptical cross section can be completely controlled and even switched between two orthogonal linear polarizations by changing the coupling of the dot emission with the polarized photonic modes. We also measure the spatial profle of the emission of a series of pillars with
different ellipticities and show that the results can be well described by simple theoretical modeling
of the modes of an infinite length elliptical cylinder
- …