12 research outputs found

    State Recognition of the Right to Food at the National Level

    Get PDF
    human rights, right to food, law, constitution, jurisprudence

    Legal guide on land consolidation: based on regulatory practices in Europe

    No full text
    Land consolidation is a highly effective land management instrument that allows for the improvement of the structure of agricultural holdings and farms in a country, which increases their economic and social efficiency and brings benefits both to right holders as well as to society in general. Since land consolidation gives mobility to land ownership and other land rights, it may also facilitate the allocation of new areas with specific purposes other than agriculture, such as for public infrastructure or nature protection and restoration. Land consolidation instruments necessitate a thoroughly elaborated legal regulation that is integrated into the national legal framework. This legal guide provides detailed guidance on legislative issues regarding land consolidation in ways that align with Voluntary Guidelines on Responsible Governance of Tenure of Land, Fisheries and Forests in the Context of National Food Security and international human rights law. It focuses on land consolidation in rural areas and is based on regional good land consolidation legislative practices in Europe, primarily on analysis of the regulatory practices in Denmark, Finland, Germany, Lithuania, the Netherlands, Serbia, Spain (Galicia) and Turkey. It also uses land consolidation regulatory practices in other European countries as a source of informationViešosios teisės katedraVytauto Didžiojo universiteta

    Current kidney function parameters overestimate kidney tissue repair in reversible experimental kidney disease

    No full text
    Although underlying mechanisms and the clinical course of kidney disease progression are well described, less is known about potential disease reversibility. Therefore, to analyze kidney recovery, we adapted a commonly used murine chronic kidney disease (CKD) model of 2,8-dihydroxyadenine (2,8-DHA) crystal-induced nephropathy to study disease recovery and efficacy of disease-modifying interventions. The recovery phase after CKD was characterized by improved kidney function after two weeks which remained stable thereafter. By contrast, even after eight weeks recovery, tubular injury and inflammation were only partially reduced, and fibrosis persisted. Deep-learning-based histologic analysis of 8,604 glomeruli and 596,614 tubular cross sections revealed numerous tubules had undergone either prominent dilation or complete atrophy, leading to atubular glomeruli and irreversible nephron loss. We confirmed these findings in a second CKD model, reversible unilateral ureteral obstruction, in which a rapid improvement of glomerular filtration rate during recovery also did not reflect the permanent histologic kidney injury. In 2,8-DHA nephropathy, increased drinking volume was highly effective in disease prevention. However, in therapeutic approaches, high fluid intake was only effective in moderate but not severe CKD and established tissue injury was again poorly reflective of kidney function parameters. The injury was particularly localized in the medulla, which is often not analyzed. Thus, recovery after crystal- or obstruction-induced CKD is characterized by ongoing tissue injury, fibrosis, and nephron loss, but not reflected by standard measures of kidney function. Hence, our data might aid in designing kidney recovery studies and suggest the need for biomarkers specifically monitoring intra-kidney tissue injury

    Urinary 2,8-dihydroxyadenine excretion in patients with adenine phosphoribosyltransferase deficiency, carriers and healthy control subjects.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowBACKGROUND: Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder of adenine metabolism that results in excessive urinary excretion of the poorly soluble 2,8-dihydroxyadenine (DHA), leading to kidney stones and chronic kidney disease. The purpose of this study was to assess urinary DHA excretion in patients with APRT deficiency, heterozygotes and healthy controls, using a recently developed ultra-performance liquid chromatography - tandem mass spectrometry (UPLC-MS/MS) assay. METHODS: Patients enrolled in the APRT Deficiency Registry and Biobank of the Rare Kidney Stone Consortium (http://www.rarekidneystones.org/) who had provided 24-h and first-morning void urine samples for DHA measurement were eligible for the study. Heterozygotes and healthy individuals served as controls. Wilcoxon-Mann-Whitney test was used to compare 24-h urinary DHA excretion between groups. Associations were examined using Spearman's correlation coefficient (rs). RESULTS: The median (range) 24-h urinary DHA excretion was 138 (64-292) mg/24 h and the DHA-to-creatinine (DHA/Cr) ratio in the first-morning void samples was 13 (4-37) mg/mmol in APRT deficiency patients who were not receiving xanthine oxidoreductase inhibitor therapy. The 24-h DHA excretion was highly correlated with the DHA/Cr ratio in first-morning void urine samples (rs = 0.84, p < .001). DHA was detected in all urine samples from untreated patients but not in any specimens from heterozygotes and healthy controls. CONCLUSIONS: High urinary DHA excretion was observed in patients with APRT deficiency, while urine DHA was undetectable in heterozygotes and healthy controls. Our results suggest that the UPLC-MS/MS assay can be used for diagnosis of APRT deficiency.Rare Kidney Stone Consortium, a part of the National Center for Advancing Translational Sciences (NCATS) Rare Diseases Clinical Research Network (RDCRN) United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Center for Advancing Translational Sciences (NCATS) United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute of Diabetes & Digestive & Kidney Diseases (NIDDK

    Comparison of the effect of allopurinol and febuxostat on urinary 2,8-dihydroxyadenine excretion in patients with Adenine phosphoribosyltransferase deficiency (APRTd): A clinical trial.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowAdenine phosphoribosyltransferase (APRT) deficiency is a rare, but significant, cause of kidney stones and progressive chronic kidney disease. The optimal treatment has not been established. The purpose of this pilot study was to compare the effect of the xanthine oxidoreductase inhibitors allopurinol and febuxostat on urinary 2,8-dihydroxyadenine (DHA) excretion in APRT deficiency patients. Patients listed in the APRT Deficiency Registry of the Rare Kidney Stone Consortium, currently receiving allopurinol therapy, were invited to participate. The trial endpoint was the 24-h urinary DHA excretion following treatment with allopurinol (400mg/day) and febuxostat (80mg/day). Urinary DHA was measured using a novel ultra-performance liquid chromatography - electrospray tandem mass spectrometry assay. Eight of the 10 patients invited completed the study. The median (range) 24-h urinary DHA excretion was 116 (75-289) mg at baseline, and 45 (13-112) mg after 14days of allopurinol therapy (P=0.036). At the end of the febuxostat treatment period, 4 patients had urinary DHA below detectable limits (<20ng/mL) compared with none of the participants following allopurinol treatment (P=0.036). The other 4 participants had a median 24-h urinary DHA excretion of 13.2 (10.0-13.4) mg at the completion of febuxostat therapy (P=0.036). Urinary DHA excretion in APRT deficiency patients decreased with conventional doses of both allopurinol and febuxostat. Febuxostat was, however, significantly more efficacious than allopurinol in reducing DHA excretion in the prescribed doses. This finding, which may translate into improved outcomes of patients with APRT deficiency, should be confirmed in a larger sample.Rare Kidney Stone Consortium, part of the Rare Diseases Clinical Research Network (RDCRN), which is an initiative of the Office of Rare Diseases Research (ORDR), National Center for Advancing Translational Sciences (NCATS) NCATS National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK

    Quantitative UPLC-MS/MS assay of urinary 2,8-dihydroxyadenine for diagnosis and management of adenine phosphoribosyltransferase deficiency.

    No full text
    To access publisher's full text version of this article click on the hyperlink at the bottom of the pageAdenine phosphoribosyltransferase (APRT) deficiency is a hereditary disorder that leads to excessive urinary excretion of 2,8-dihydroxyadenine (DHA), causing nephrolithiasis and chronic kidney disease. Treatment with allopurinol or febuxostat reduces DHA production and attenuates the renal manifestations. Assessment of DHA crystalluria by urine microscopy is used for therapeutic monitoring, but lacks sensitivity. We report a high-throughput assay based on ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) for quantification of urinary DHA. The UPLC-MS/MS assay was optimized by a chemometric approach for absolute quantification of DHA, utilizing isotopically labeled DHA as an internal standard. Experimental screening was conducted with D-optimal design and optimization of the DHA response was performed with central composite face design and related to the peak area of DHA using partial least square regression. Acceptable precision and accuracy of the DHA concentration were obtained over a calibration range of 100 to 5000ng/mL on three different days. The intra- and inter-day accuracy and precision coefficients of variation were well within ±15% for quality control samples analyzed in replicates of six at three concentration levels. Absolute quantification of DHA in urine samples from patients with APRT deficiency was achieved wihtin 6.5min. Measurement of DHA in 24h urine samples from three patients with APRT deficiency, diluted 1:15 (v/v) with 10mM ammonium hydroxide (NH4OH), yielded a concentration of 3021, 5860 and 10563ng/mL and 24h excretion of 816, 1327 and 1649mg, respectively. A rapid and robust UPLC-MS/MS assay for absolute quantification of DHA in urine was successfully developed. We believe this method will greatly facilitate diagnosis and management of patients with APRT deficiency.Rare Kidney Stone Consortium (U54DK083908), Rare Diseases Clinical Research Network (RDCRN), National Center for Advancing Translational Sciences (NCATS). National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK

    Cellular and Molecular Mechanisms of Kidney Injury in 2,8-Dihydroxyadenine Nephropathy.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowBackground: Hereditary deficiency of adenine phosphoribosyltransferase causes 2,8-dihydroxyadenine (2,8-DHA) nephropathy, a rare condition characterized by formation of 2,8-DHA crystals within renal tubules. Clinical relevance of rodent models of 2,8-DHA crystal nephropathy induced by excessive adenine intake is unknown. Methods: Using animal models and patient kidney biopsies, we assessed the pathogenic sequelae of 2,8-DHA crystal-induced kidney damage. We also used knockout mice to investigate the role of TNF receptors 1 and 2 (TNFR1 and TNFR2), CD44, or alpha2-HS glycoprotein (AHSG), all of which are involved in the pathogenesis of other types of crystal-induced nephropathies. Results: Adenine-enriched diet in mice induced 2,8-DHA nephropathy, leading to progressive kidney disease, characterized by crystal deposits, tubular injury, inflammation, and fibrosis. Kidney injury depended on crystal size. The smallest crystals were endocytosed by tubular epithelial cells. Crystals of variable size were excreted in urine. Large crystals obstructed whole tubules. Medium-sized crystals induced a particular reparative process that we term extratubulation. In this process, tubular cells, in coordination with macrophages, overgrew and translocated crystals into the interstitium, restoring the tubular luminal patency; this was followed by degradation of interstitial crystals by granulomatous inflammation. Patients with adenine phosphoribosyltransferase deficiency showed similar histopathological findings regarding crystal morphology, crystal clearance, and renal injury. In mice, deletion of Tnfr1 significantly reduced tubular CD44 and annexin two expression, as well as inflammation, thereby ameliorating the disease course. In contrast, genetic deletion of Tnfr2, Cd44, or Ahsg had no effect on the manifestations of 2,8-DHA nephropathy. Conclusions: Rodent models of the cellular and molecular mechanisms of 2,8-DHA nephropathy and crystal clearance have clinical relevance and offer insight into potential future targets for therapeutic interventions.German Research Foundation (DFG) Federal Ministry of Education & Research (BMBF) RWTH Interdisciplinary Centre for Clinical Research (Interdisziplinares Zentrum fur Klinische Forschung (IZKF)) Medical Faculty of the RWTH Aachen University Rare Kidney Stone Consortium, National Center for Advancing Translational Sciences (NCATS) Rare Diseases Clinical Research Network United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Center for Advancing Translational Sciences (NCATS) United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute of Diabetes & Digestive & Kidney Diseases (NIDDK
    corecore