79 research outputs found

    Tumor de Abrikossoff

    Get PDF

    Chronic Kidney Disease is associated with an increase of Intimal Dendritic cells in a comparative autopsy study

    Get PDF
    Background: Chronic Kidney Disease (CKD) and inflammation are risk factors for atherosclerotic vascular disease (ASVD). In inflammatory conditions, Nuclear Factor-kappa B (NF-kappa B) is frequently activated and it has been detected in human ASVD. In this work, we investigated if the degree of inflammation and of NF-kappa B activation were increased in the aorta of patients with CKD. Methods: This is a case-control pilot study performed on 30 abdominal aorta samples from 10 human autopsies. Cases were patients with CKD and controls patients with normal glomerular filtration rate (eGFR). Infiltrating mononuclear cells (S100(+), CD3(+), CD40(+), CD40L(+)) and activation of NF-kappa B were identified by immunohistochemistry. Findings: The number of cells in the intima which showed activated nuclear NF-.B correlated with severity of ASVD lesions (r = 0.56, p = 0.003), with numbers of CD3(+) lymphocytes in adventitia (r = 0.50, p = 0.008), with numbers of CD40(+) cells in the intima (r = 0.59, p = 0.002) or in the adventitia (r = 0.45, p = 0.02), and with numbers of CD40L(+) cells in the intima (r = 0.51, p = 0.011). Increased numbers of S100(+) Intimal Dendritic cells (IDCs) were associated with ASVD (p = 0.03) and CKD (p = 0.01). Conclusions: Number of CD3(+) cells, of CD40(+) cells, of CD40L(+) cells and the degree of NF-kappa B activation were increased in ASVD lesions suggesting a role for the adaptive T cell in the development of ASVD lesions. IDCs were associated both with ASVD and CKD suggesting a role of these cells in the pathogenesis of ASVD in CKD

    High expression of ecto-nucleotidases CD39 and CD73 in human endometrial tumors

    Get PDF
    One of the strategies used by tumors to evade immunosurveillance is the accumulation of extracellular adenosine, which has immunosupressive and tumor promoting effects. The study of the mechanisms leading to adenosine formation at the tumor interstitium are therefore of great interest in oncology. The dominant pathway generating extracellular adenosine in tumors is the dephosphorylation of ATP by ecto-nucleotidases. Two of these enzymes acting sequentially, CD39 and CD73, efficiently hydrolyze extracellular ATP to adenosine. They have been found to play a crucial role in a variety of tumors, but there were no data concerning endometrial cancer, the most frequent of the invasive tumors of the female genital tract. The aim of the present work is to study the expression of CD39 and CD73 in human endometrial cancer. We have analyzed protein and gene expression, as well as enzyme activity, in type I endometrioid adenocarcinomas and type II serous adenocarcinomas and their nonpathological endometrial counterparts. High levels of both enzymes were found in tumor samples, with significantly increased expression of CD39 in type II serous tumors, which also coincided with the higher tumor grade. Our results reinforce the involvement of the adenosinergic system in cancer, emphasizing the relevance of ecto-nucleotidases as emerging therapeutic targets in oncology

    Multidrug resistance protein 1 localization in lipid raft domains and prostasomes in prostate cancer cell lines

    Get PDF
    Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in Ca

    Identification of prefoldin amplification (1q23.3-q24.1) in bladder cancer using comparative genomic hybridization (CGH) arrays of urinary DNA

    Get PDF
    Background: Array-CGH represents a comprehensive tool to discover genomic disease alterations that could potentially be applied to body fluids. In this report, we aimed at applying array-CGH to urinary samples to characterize bladder cancer. Methods: Urinary DNA from bladder cancer patients and controls were hybridized on 44K oligonucleotide arrays. Validation analyses of identified regions and candidates included fluorescent in situ hybridization (FISH) and immunohistochemistry in an independent set of bladder tumors spotted on custom-made tissue arrays (n = 181). Results: Quality control of array-CGH provided high reproducibility in dilution experiments and when comparing reference pools. The most frequent genomic alterations (minimal recurrent regions) among bladder cancer urinary specimens included gains at 1q and 5p, and losses at 10p and 11p. Supervised hierarchical clustering identified the gain at 1q23.3-q24.1 significantly correlated to stage (p = 0.011), and grade (p = 0.002). The amplification and overexpression of Prefoldin (PFND2), a selected candidate mapping to 1q23.3-q24.1, correlated to increasing stage and tumor grade by means of custom-designed and optimized FISH (p = 0.013 and p = 0.023, respectively), and immunohistochemistry (p ≤0.0005 and p = 0.011, respectively), in an independent set of bladder tumors included in tissue arrays. Moreover, PFND2 overexpression was significantly associated with poor disease-specific survival (p ≤0.0005). PFND2 was amplified and overexpressed in bladder tumors belonging to patients providing urinary specimens where 1q23.3q24.1 amplification was detected by array-CGH. Conclusions: Genomic profiles of urinary DNA mirrowed bladder tumors. Molecular profiling of urinary DNA using array-CGH contributed to further characterize genomic alterations involved in bladder cancer progression. PFND2 was identified as a tumor stratification and clinical outcome prognostic biomarker for bladder cancer patients

    The TGFβ pathway stimulates ovarian cancer cell proliferation by increasing IGF1R levels

    Get PDF
    In a search for new therapeutic targets for treating epithelial ovarian cancer, we analyzed the Transforming Growth Factor Beta (TGFβ) signaling pathway in these tumors. Using a TMA with patient samples we found high Smad2 phosphorylation in ovarian cancer tumoral cells, independently of tumor subtype (high-grade serous or endometrioid). To evaluate the impact of TGFβ receptor inhibition on tumoral growth, we used different models of human ovarian cancer orthotopically grown in nude mice (OVAs). Treatment with a TGFβRI&II dual inhibitor, LY2109761, caused a significant reduction in tumor size in all these models, affecting cell proliferation rate. We identified Insulin Growth Factor (IGF)1 receptor as the signal positively regulated by TGFβ implicated in ovarian tumor cell proliferation. Inhibition of IGF1R activity by treatment with a blocker antibody (IMC-A12) or with a tyrosine kinase inhibitor (linsitinib) inhibited ovarian tumoral growth in vivo. When IGF1R levels were decreased by shRNA treatment, LY2109761 lost its capacity to block tumoral ovarian cell proliferation. At the molecular level TGFβ induced mRNA IGF1R levels. Overall, our results suggest an important role for the TGFβ signaling pathway in ovarian tumor cell growth through the control of IGF1R signaling pathway. Moreover, it identifies anti-TGFβ inhibitors as being of potential use in new therapies for ovarian cancer patients as an alternative to IGF1R inhibition

    Ecto-nucleotidases activities in the contents of ovarian endometriomas: potential biomarkers of endometriosis

    Get PDF
    Endometriosis, defined as the growth of endometrial tissue outside the uterus, is a common gynecologic condition affecting millions of women worldwide. It is an inflammatory, estrogen-dependent complex disorder, with broad symptomatic variability, pelvic pain, and infertility being the main characteristics. Ovarian endometriomas are frequently developed in women with endometriosis. Late diagnosis is one of the main problems of endometriosis; thus, it is important to identify biomarkers for early diagnosis. The aim of the present work is to evaluate the ecto-nucleotidases activities in the contents of endometriomas. These enzymes, through the regulation of extracellular ATP and adenosine levels, are key enzymes in inflammatory processes, and their expression has been previously characterized in human endometrium. To achieve our objective, the echo-guided aspirated fluids of endometriomas were analyzed by evaluating the ecto-nucleotidases activities and compared with simple cysts. Our results show that enzyme activities are quantifiable in the ovarian cysts aspirates and that endometriomas show significantly higher ecto-nucleotidases activities than simple cysts (5.5-fold increase for ATPase and 20-fold for ADPase), thus being possible candidates for new endometriosis biomarkers. Moreover, we demonstrate the presence of ecto-nucleotidases bearing exosomes in these fluids. These results add up to the knowledge of the physiopathologic mechanisms underlying endometriosis and, open up a promising new field of study

    Hepatic carcinoma-associated fibroblasts promote an adaptative response in colorectal cancer cells that inhibit proliferation and apoptosis: nonresistant cells die by nonapoptotic cell death

    Get PDF
    Carcinoma-associated fibroblasts (CAFs) are important contributors of microenvironment in determining the tumor's fate. This study aimed to compare the influence of liver microenvironment and primary tumor microenvironment on the behavior of colorectal carcinoma. Conditioned medium (CM) from normal colonic fibroblasts (NCFs), CAFs from primary tumor (CAF-PT) or liver metastasis (CAF-LM) were obtained. We performed functional assays to test the influence of each CM on colorectal cell lines. Microarray and gene set enrichment analysis (GSEA) were performed in DLD1 cells cultured in matched CM. In DLD1 cells, CAF-LM CM compared with CAF-PT CM and NCF led to a more aggressive phenotype, induced the features of an epithelial-to-mesenchymal transition more efficiently, and stimulated migration and invasion to a greater extent. Sustained stimulation with CAF-LM CM evoked a transient G(2)/M cell cycle arrest accompanied by a reduction of apoptosis, inhibition of proliferation, and decreased viability of SW1116, SW620, SW480, DLD1, HT-29, and Caco-2 cells and provoked nonapoptotic cell death in those cells carrying KRAS mutations. Cells resistant to CAF-LM CM completely changed their morphology in an extracellular signal-regulated protein kinase-dependent process and depicted an increased stemness capacity alongside the Wnt pathway stimulation. The transcriptomic profile of DLD1 cells treated with CAF-LM CM was associated with Wnt and mitogen-activated protein kinase pathways activation in GSEA. Therefore, the liver micro-environment induces more efficiently the aggressiveness of colorectal cancer cells than other matched micro-environments do but secondarily evokes cell death. Resistant cells displayed higher stemness capacity

    Regression of advanced diabetic nephropathy by hepatocyte growth factor gene therapy in rats

    Get PDF
    Diabetic nephropathy is the main cause of end-stage renal disease requiring dialysis in developed countries. In this study, we demonstrated the therapeutic effect of hepatocyte growth factor (HGF) on advanced rather than early diabetic nephropathy using a rat model of streptozotocin-induced diabetes. Early diabetic nephropathy (16 weeks after induction of diabetes) was characterized by albuminuria, hyperfiltration, and glomerular hypertrophy, whereas advanced diabetic nephropathy showed prominent transforming growth factor (TGF)-beta1 upregulation, mesangial expansion, and glomerulosclerosis. An SP1017-formulated human HGF (hHGF) plasmid was administered by intramuscular injection combined with electroporation over a 30-day follow-up in rats with early and advanced diabetic nephropathy. hHGF gene therapy upregulated endogenous rat HGF in the diabetic kidney (rat HGF by RT-PCR was threefold higher than in diabetic rats without therapy). hHGF gene therapy did not improve functional or morphologic abnormalities in early diabetic nephropathy. hHGF gene therapy reduced albuminuria and induced strong regression of mesangial expansion and glomerulosclerosis in advanced diabetic nephropathy. These findings were associated with suppression of renal TGF-beta1 and mesangial connective tissue growth factor (CTGF) upregulation, inhibition of renal tissue inhibitor of metalloproteinase (TIMP)-1 expression, and reduction of renal interstitial myofibroblasts. In conclusion, our results suggest that hHGF gene therapy may be considered as an innovative therapeutic strategy to treat advanced diabetic nephropathy

    Impaired expression of ectonucleotidases in ectopic and eutopic endometrial tissue is in favor of ATP accumulation in the tissue microenvironment in endometriosis

    Get PDF
    Endometriosis is a prevalent disease defined by the presence of endometrial tissue outside the uterus. Adenosine triphosphate (ATP), as a proinflammatory molecule, promotes and helps maintain the inflammatory state of endometriosis. Moreover, ATP has a direct influence on the two main symptoms of endometriosis: infertility and pain. Purinergic signaling, the group of biological responses to extracellular nucleotides such as ATP and nucleosides such as adenosine, is involved in the biology of reproduction and is impaired in pathologies with an inflammatory component such as endometriosis. We have previously demonstrated that ectonucleotidases, the enzymes regulating extracellular ATP levels, are active in non-pathological endometria, with hormone-dependent changes in expression throughout the cycle. In the present study we have focused on the expression of ectonucleotidases by means of immunohistochemistry and in situ activity in eutopic and ectopic endometrial tissue of women with endometriosis, and we compared the results with endometria of women without the disease. We have demonstrated that the axis CD39-CD73 is altered in endometriosis, with loss of CD39 and CD73 expression in deep infiltrating endometriosis, the most severe, and most recurring, endometriosis subtype. Our results indicate that this altered expression of ectonucleotidases in endometriosis boosts ATP accumulation in the tissue microenvironment. An important finding is the identification of the nucleotide pyrophophatase/phosphodiesterase 3 (NPP3) as a new histopathological marker of the disease since we have demonstrated its expression in the stroma only in endometriosis, in both eutopic and ectopic tissue. Therefore, targeting the proteins directly involved in ATP breakdown could be an appropriate approach to consider in the treatment of endometriosis
    corecore