8 research outputs found

    Dynamic Visualization of Nanoscale Vortex Orbits

    No full text
    Due to the atomic-scale resolution, scanning tunneling microscopy is an ideal technique to observe the smallest objects. Nevertheless, it suffers from very long capturing times in order to investigate dynamic processes at the nanoscale. We address this issue, for vortex matter in NbSe<sub>2</sub>, by driving the vortices using an ac magnetic field and probing the induced periodic tunnel current modulations. Our results reveal different dynamical modes of the driven vortex lattices. In addition, by recording and synchronizing the time evolution of the tunneling current at each pixel, we visualize the overall dynamics of the vortex lattice with submillisecond time resolution and subnanometer spatial resolution

    Mapping Magnetic Near-Field Distributions of Plasmonic Nanoantennas

    No full text
    We present direct experimental mapping of the lateral magnetic near-field distribution in plasmonic nanoantennas using aperture scanning near-field optical microscopy (SNOM). By means of full-field simulations it is demonstrated how the coupling of the hollow-pyramid aperture probe to the nanoantenna induces an effective magnetic dipole which efficiently excites surface plasmon resonances only at lateral magnetic field maxima. This excitation in turn affects the detected light intensity enabling the visualization of the lateral magnetic near-field distribution of multiple odd and even order plasmon modes with subwavelength spatial resolution

    Nonlinear Optical Properties of Ag Nanoclusters and Nanoparticles Dispersed in a Glass Host

    No full text
    The nonlinear absorption of Ag atomic clusters and nanoparticles dispersed in a transparent oxyfluoride glass host has been studied. The as-prepared glass, containing 0.15 atom % Ag, shows an absorption band in the UV/violet attributed to the presence of amorphous Ag atomic nanoclusters with an average size of 1.2 nm. Upon heat treatment the Ag nanoclusters coalesce into larger nanoparticles that show a surface plasmon absorption band in the visible. Open aperture <i>z</i>-scan experiments using 480 nm nanosecond laser pulses demonstrated nonsaturated and saturated nonlinear absorption with large nonlinear absorption indices for the Ag nanoclusters and nanoparticles, respectively. These properties are promising, e.g., for applications in optical limiting and object’s contrast enhancement

    Unidirectional Side Scattering of Light by a Single-Element Nanoantenna

    No full text
    Unidirectional side scattering of light by a single-element plasmonic nanoantenna is demonstrated using full-field simulations and back focal plane measurements. We show that the phase and amplitude matching that occurs at the Fano interference between two localized surface plasmon modes in a V-shaped nanoparticle lies at the origin of this effect. A detailed analysis of the V-antenna modeled as a system of two coherent point-dipole sources elucidates the mechanisms that give rise to a tunable experimental directivity as large as 15 dB. The understanding of Fano-based directional scattering opens a way to develop new directional optical antennas for subwavelength color routing and self-referenced directional sensing. In addition, the directionality of these nanoantennas can increase the detection efficiency of fluorescence and surface enhanced Raman scattering

    Electrically Driven Unidirectional Optical Nanoantennas

    No full text
    Directional antennas revolutionized modern day telecommunication by enabling precise beaming of radio and microwave signals with minimal loss of energy. Similarly, directional optical nanoantennas are expected to pave the way toward on-chip wireless communication and information processing. Currently, on-chip integration of such antennas is hampered by their multielement design or the requirement of complicated excitation schemes. Here, we experimentally demonstrate electrical driving of in-plane tunneling nanoantennas to achieve broadband unidirectional emission of light. Far-field interference, as a result of the spectral overlap between the dipolar emission of the tunnel junction and the fundamental quadrupole-like resonance of the nanoantenna, gives rise to a directional radiation pattern. By tuning this overlap using the applied voltage, we record directivities as high as 5 dB. In addition to electrical tunability, we also demonstrate passive tunability of the directivity using the antenna geometry. These fully configurable electrically driven nanoantennas provide a simple way to direct optical energy on-chip using an extremely small device footprint

    Near-Field Mapping of Optical Fabry–Perot Modes in All-Dielectric Nanoantennas

    No full text
    Subwavelength optical resonators and scatterers are dramatically expanding the toolset of the optical sciences and photonics engineering. By offering the opportunity to control and shape light waves in nanoscale volumes, recent developments using high-refractive-index dielectric scatterers gave rise to efficient flat-optical components such as lenses, polarizers, phase plates, color routers, and nonlinear elements with a subwavelength thickness. In this work, we take a deeper look into the unique interaction of light with rod-shaped amorphous silicon scatterers by tapping into their resonant modes with a localized subwavelength light sourcean aperture scanning near-field probe. Our experimental configuration essentially constitutes a dielectric antenna that is locally driven by the aperture probe. We show how leaky transverse electric and magnetic modes can selectively be excited and form specific near-field distribution depending on wavelength and antenna dimensions. The probe’s transmittance is furthermore enhanced upon coupling to the Fabry–Perot cavity modes, revealing all-dielectric nanorods as efficient transmitter antennas for the radiation of subwavelength emitters, in addition to constituting an elementary building block for all-dielectric metasurfaces and flat optics

    Bosonic Confinement and Coherence in Disordered Nanodiamond Arrays

    No full text
    In the presence of disorder, superconductivity exhibits short-range characteristics linked to localized Cooper pairs which are responsible for anomalous phase transitions and the emergence of quantum states such as the bosonic insulating state. Complementary to well-studied homogeneously disordered superconductors, superconductor-normal hybrid arrays provide tunable realizations of the degree of granular disorder for studying anomalous quantum phase transitions. Here, we investigate the superconductor–bosonic dirty metal transition in disordered nanodiamond arrays as a function of the dispersion of intergrain spacing, which ranges from angstroms to micrometers. By monitoring the evolved superconducting gaps and diminished coherence peaks in the single-quasiparticle density of states, we link the destruction of the superconducting state and the emergence of bosonic dirty metallic state to breaking of the global phase coherence and persistence of the localized Cooper pairs. The observed resistive bosonic phase transitions are well modeled using a series–parallel circuit in the framework of bosonic confinement and coherence

    Superconducting Ferromagnetic Nanodiamond

    No full text
    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature <i>T</i><sub>c</sub> ∼ 3 K and a Curie temperature <i>T</i><sub>Curie</sub> > 400 K. In spite of the high <i>T</i><sub>Curie</sub>, our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing
    corecore