2,727 research outputs found
The spectacular X-ray echo of a magnetar burst
The Anomalous X-ray Pulsar (AXP) 1E 1547.0-5408 reactivated in 2009 January
with the emission of dozens of short bursts. Follow-up observations with
Swift/XRT and XMM-Newton showed the presence of multiple expanding rings around
the position of the AXP. These rings are due to scattering, by different layers
of interstellar dust, of a very high fluence burst emitted by 1E 1547.0-5408 on
2009 January 22. Thanks to the exceptional brightness of the X-ray rings, we
could carry out a detailed study of their spatial and spectral time evolution
until 2009 February 4. This analysis gives the possibility to estimate the
distance of 1E 1547.0-5408. We also derived constraints on the properties of
the dust and of the burst responsible for this rare phenomenon.Comment: Proceedings of the conference X-Ray Astronomy 2009, Present Status,
multiwavelength approach and future perspectives, September 7 - 11, 2009,
Bologna, Ital
Re-sequenciamento genômico da cultivar de feijoeiro comum Pérola (Phaseolus vulgaris L.).
O objetivo desse estudo é realizar através dos dados de re-sequenciamento da cultivar Pérola as análises de montagem, anotação e identificação de variações nucleotídicas através do alinhamento com os genomas de referência das variedades BAT93 e G19833 de feijoeiro comum.Pôster - pós-graduação
Behind the dust curtain: the spectacular case of GRB 160623A
We report on the X-ray dust-scattering features observed around the afterglow
of the gamma ray burst GRB 160623A. With an XMM-Newton observation carried out
~2 days after the burst, we found evidence of at least six rings, with angular
size expanding between ~2 and 9 arcmin, as expected for X-ray scattering of the
prompt GRB emission by dust clouds in our Galaxy. From the expansion rate of
the rings, we measured the distances of the dust layers with extraordinary
precision: 528.1 +\- 1.2 pc, 679.2 +\- 1.9 pc, 789.0 +\- 2.8 pc, 952 +\- 5 pc,
1539 +\- 20 pc and 5079 +\- 64 pc. A spectral analysis of the ring spectra,
based on an appropriate dust-scattering model (BARE-GR-B from Zubko et al.
2004}) and the estimated burst fluence, allowed us to derive the column density
of the individual dust layers, which are in the range 7x10^20-1.5x10^22 cm^-2.
The farthest dust-layer (i.e. the one responsible for the smallest ring) is
also the one with the lowest column density and it is possibly very extended,
indicating a diffuse dust region. The properties derived for the six
dust-layers (distance, thickness, and optical depth) are generally in good
agreement with independent information on the reddening along this line of
sight and on the distribution of molecular and atomic gas.Comment: 9 pages, 10 figures, 1 table; accepted for publication in MNRA
GRBs as multimessenger sources
Gamma-Ray Bursts are center stage in the new era of multimessenger astronomy, as their nature is probed through photons, gravitational waves (GW), neutrinos and cosmic rays. Discovered thanks to their powerful multiwavelength electromagnetic signal, they have been linked to the explosion of very massive stars (“long GRBs”), or to the coalescence of compact objects (“short GRBs”) which also produce a GW signal. GRBs are also believed to be efficient particle accelerators, as required by the observation of high-energy photons up to ∼ 100GeV. Therefore, quite naturally, they have been proposed as possible sources of the mysterious ultra-high-energy cosmic rays (UHECRs), with energies above 1018 eV. However, some of the current models that simultaneously produce high electromagnetic fluxes and high-energy cosmic rays necessarily produce neutrinos as well, with a flux which appears to violate the limits recently set by the IceCube detector. I will review the observational features of GRBs as multi-messenger sources, as well as their link to theoretical models
Soil Organic Carbon Stock Assessment for Volunteer Carbon Removal Benefit: Methodological Approach in Chestnut Orchard for Fruit Production
The implementation of a protocol for supporting a reliable soil C market is needed. This paper aims to propose a methodology for evaluating soil organic C (SOC) stock changes for the C credit market. A 15-year-old chestnut orchard (CO) and a chestnut coppice (CC) as reference land were selected in the northern part of the Apennine chain (Italy). The CO is the result of the CC conversion carried out in 2005. The soil sampling by pedogenetic horizons till parent material was carried out in 2005, 2010, 2015 and 2020 in CO and in 2005 and 2020 in CC. For each sample, the concentration and stock of the total SOC and of the most recalcitrant SOC form were estimated. Unlike the CC, in CO, an increase over time of SOC stocks was observed throughout the entire soil profile indicating the suitability of CO for C credit gaining. Most of the SOC was stored within the deepest soil horizon. The methodology can be considered eligible for the C credit market because, replicable, the CO was intentionally realized by humans after 1990, and the additionality was evaluated. Moreover, soil functionality was considered through the evaluation of SOC forms and of the pedogenetic horizons
Heavy metal accumulation in vegetables grown in urban gardens.
Urban agriculture is increasingly popular for social and economical benefits. However, edible crops grown in cities can be contaminated by airborne pollutants, thuse leading to serious heatlh risks. Therefore we need a better understanding of contamination risks of urban cultivation to define safe practices. Here we study heavy metal risk in horticultural crops grown in urban gardens of Bologna, Italy. We investigated the effect of proximity to different pollution sources such as roads and railways, and the effect of the growing system used, that is soil versus soilless cultivation. We compared heavy metals concentration in urban and rural crops. We focussed on surface deposition and tissue accumulation of pollutants during three years. Results show that in the city crops near the road were polluted by heavy metals, with up to 160 mg per Kg dry weight for lettuce and 210 mg/Kg for basil. The highest Cd accumulation of up to 1.2 mg/Kg was found in rural tomato. Soilless planting systems enabled a reduction of heavy metal accumulation in plant tissue, of up to -71% for rosemary leaves
Effects of Douglas fir stand age on soil chemical properties, nutrient dynamics, and enzyme activity: A case study in Northern Apennines, Italy
The aim of this study was to determine the effect of a Douglas fir plantation along a stand chronosequence in the North Apennine (Italy) on soil carbon and nitrogen stocks, as well as on soil chemical and biochemical properties involved in the nutrients biogeochemical cycle. In 2014, three sites of Douglas fir stands, aged 80, 100, and 120 years, were selected in Vallombrosa forest to study the dynamics of soil nutrients in the ecosystem. Along the Douglas fir chronosequence, general evidence of surface element accumulation was found, including a conspicuous increase of alkaline element with respect to Al, which was attributed to the increase of soil pH along the Douglas fir stand age classes. A general increase of specific enzyme activity (per unit of organic carbon) and functional diversity were observed in the epipedon of the Douglas fir stand over 100 years of age. Moreover, the (chitinase + leucine aminopeptidase) to acid phosphatase ratio progressively increased from 0.15 to 0.31 in the epipedon of the chrononsequence, while the -glucosidase to (chitinase + leucine aminopeptidase) ratio decreased from 1.45 to 0.83, suggesting nitrogen limitation with respect to carbon. In fact, the soil carbon stock progressively increased along the chronosequence, in the epipedon from 17 to 53 Mg C ha(-1) and in the endopedon from 17 to 37 Mg C ha(-1). Conversely, the soil nitrogen stock increased from 1.2 to 2.4 Mg N ha(-1), but not over the 100-year-old stand class. In conclusion, soil organic matter accumulation became sufficient to define the umbric horizon in the Northern Apennines when the Douglas fir plantation reached the age of 100 years. Over this age class of plants, a limitation of soil nitrogen may occur, affecting enzyme activities regulating the biogeochemical cycle of nutrients
- …