17 research outputs found

    Clinician Recognition of the Acute Respiratory Distress Syndrome: Risk Factors for Under-Recognition and Trends Over Time.

    No full text
    ObjectivesThe acute respiratory distress syndrome is common in critically ill patients. Recognition is crucial because acute respiratory distress syndrome is associated with a high mortality rate, and low tidal volume ventilation improves mortality. However, acute respiratory distress syndrome often goes unrecognized. Risk factors for under-recognition and trends over time have not been fully described.DesignRetrospective chart review of patients with acute respiratory distress syndrome from a prospective cohort study of critically ill patients. For each patient's ICU stay, we searched the chart for terms that indicated that acute respiratory distress syndrome was diagnosed, in the differential diagnosis, or treated with low tidal volume ventilation.SettingICUs at a tertiary hospital at the University of California, San Francisco between 2008 and 2016.PatientsCritically ill patients with acute respiratory distress syndrome.InterventionsNone.Measurements and main resultsAcute respiratory distress syndrome was recognized in 70% of patients, and recognition increased from 60% in 2008-2009 to 92% in 2016 (p = 0.004). Use of tidal volumes less than 6.5 mL/kg also increased (p < 0.001) from 20% to 92%. Increased acute respiratory distress syndrome severity (p = 0.01) and vasopressor use (p = 0.04) were associated with greater recognition. Clinician diagnosis of acute respiratory distress syndrome and inclusion of acute respiratory distress syndrome in the differential diagnosis were associated with tidal volumes less than 6.5 mL/kg (51% use of tidal volume ≤ 6.5 mL/kg if acute respiratory distress syndrome recognized vs 15% if not recognized; p = 0.002). Diagnosing acute respiratory distress syndrome was associated with lower tidal volume in multivariate analysis.ConclusionsAlthough acute respiratory distress syndrome recognition and low tidal volume ventilation use have increased over time, they remain less than universal. Clinician recognition of acute respiratory distress syndrome is associated with both systemic and respiratory severity of illness and is also associated with use of low tidal volume ventilation

    Plasma Metabolites in Early Sepsis Identify Distinct Clusters Defined by Plasma Lipids.

    No full text
    Unbiased global metabolomic profiling has not been used to identify distinct subclasses in patients with early sepsis and sepsis-associated acute respiratory distress syndrome. In this study, we examined whether the plasma metabolome reflects systemic illness in early sepsis and in acute respiratory distress syndrome.DesignPlasma metabolites were measured in subjects with early sepsis.SettingPatients were admitted from the emergency department to the ICU in a plasma sample collected within 24 hours of ICU admission. Metabolic profiling of 970 metabolites was performed by Metabolon (Durham, NC). Hierarchical clustering and partial least squares discriminant clustering were used to identify distinct clusters among patients with early sepsis and sepsis-associated acute respiratory distress syndrome.InterventionsNone.Measurements and main resultsAmong critically ill patients with early sepsis (n = 197), three metabolically distinct subgroups were identified, with metabolic subtype driven by plasma lipids. Group 1, with 45 subjects (23% of cohort), had increased 60-day mortality (odds ratio, 2; 95% CI, 0.99-4.0; p = 0.04 for group 1 vs all others). This group also had higher rates of vasopressor-dependent shock, acute kidney injury, and met Berlin acute respiratory distress syndrome criteria more often (all p < 0.05). Conversely, metabolic group 3, with 76 subjects (39% of cohort), had the lowest risk of 60-day mortality (odds ratio, 0.44; 95% CI, 0.22-0.86; p = 0.01) and lower rates of organ dysfunction as reflected in a lower Simplified Acute Physiology Score II (p < 0.001). In contrast, global metabolomic profiling did not separate patient with early sepsis with moderate-to-severe acute respiratory distress syndrome (n = 78) from those with sepsis without acute respiratory distress syndrome (n = 75).ConclusionsPlasma metabolomic profiling in patients with early sepsis identified three metabolically distinct groups that were characterized by different plasma lipid profiles, distinct clinical phenotypes, and 60-day mortality. Plasma metabolites did not distinguish patients with early sepsis who developed acute respiratory distress syndrome from those who did not
    corecore