48 research outputs found

    Context-Specific Effects of TGF-β/SMAD3 in Cancer Are Modulated by the Epigenome.

    Get PDF
    The transforming growth factor beta (TGF-β) signaling pathway exerts opposing effects on cancer cells, acting as either a tumor promoter or a tumor suppressor. Here, we show that these opposing effects are a result of the synergy between SMAD3, a downstream effector of TGF-β signaling, and the distinct epigenomes of breast-tumor-initiating cells (BTICs). These effects of TGF-β are associated with distinct gene expression programs, but genomic SMAD3 binding patterns are highly similar in the BTIC-promoting and BTIC-suppressing contexts. Our data show cell-type-specific patterns of DNA and histone modifications provide a modulatory layer by determining accessibility of genes to regulation by TGF-β/SMAD3. LBH, one such context-specific target gene, is regulated according to its DNA methylation status and is crucial for TGF-β-dependent promotion of BTICs. Overall, these results reveal that the epigenome plays a central and previously overlooked role in shaping the context-specific effects of TGF-β in cancer.S.J.V. was supported by a grant from the Dutch Cancer Foundation (KWF).This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.celrep.2015.11.04

    SOX4 can redirect TGF-β-mediated SMAD3-transcriptional output in a context-dependent manner to promote tumorigenesis.

    Get PDF
    Expression of the transcription factor SOX4 is often elevated in human cancers, where it generally correlates with tumor-progression and poor-disease outcome. Reduction of SOX4 expression results in both diminished tumor-incidence and metastasis. In breast cancer, TGF-β-mediated induction of SOX4 has been shown to contribute to epithelial-to-mesenchymal transition (EMT), which controls pro-metastatic events. Here, we identify SMAD3 as a novel, functionally relevant SOX4 interaction partner. Genome-wide analysis showed that SOX4 and SMAD3 co-occupy a large number of genomic loci in a cell-type specific manner. Moreover, SOX4 expression was required for TGF-β-mediated induction of a subset of SMAD3/SOX4-co-bound genes regulating migration and extracellular matrix-associated processes, and correlating with poor-prognosis. These findings identify SOX4 as an important SMAD3 co-factor controlling transcription of pro-metastatic genes and context-dependent shaping of the cellular response to TGF-β. Targeted disruption of the interaction between these factors may have the potential to disrupt pro-oncogenic TGF-β signaling, thereby impairing tumorigenesis

    Epigenetic changes in inflammatory arthritis monocytes contribute to disease and can be targeted by JAK inhibition

    Get PDF
    OBJECTIVES: How the local inflammatory environment regulates epigenetic changes in the context of inflammatory arthritis remains unclear. Here we assessed the transcriptional and active enhancer profile of monocytes derived from the inflamed joints of JIA patients, a model well-suited for studying inflammatory arthritis. METHODS: RNA sequencing and H3K27me3 chromatin immunoprecipitation sequencing (ChIP-seq) were used to analyse the transcriptional and epigenetic profile, respectively, of JIA synovial fluid-derived monocytes. RESULTS: Synovial-derived monocytes display an activated phenotype, which is regulated on the epigenetic level. IFN signalling-associated genes are increased and epigenetically altered in synovial monocytes, indicating a driving role for IFN in establishing the local inflammatory phenotype. Treatment of synovial monocytes with the Janus-associated kinase (JAK) inhibitor ruxolitinib, which inhibits IFN signalling, transformed the activated enhancer landscape and reduced disease-associated gene expression, thereby inhibiting the inflammatory phenotype. CONCLUSION: This study provides novel insights into epigenetic regulation of inflammatory arthritis patient-derived monocytes and highlights the therapeutic potential of epigenetic modulation for the treatment of inflammatory rheumatic diseases

    C/EBPɑ is crucial determinant of epithelial maintenance by preventing epithelial-to-mesenchymal transition

    Get PDF
    Extracellular signals such as TGF-β can induce epithelial-to-mesenchymal transition (EMT) in cancers of epithelial origin, promoting molecular and phenotypical changes resulting in pro-metastatic characteristics. We identified C/EBPα as one of the most TGF-β-mediated downregulated transcription factors in human mammary epithelial cells. C/EBPα expression prevents TGF-β-driven EMT by inhibiting expression of known EMT factors. Depletion of C/EBPα is sufficient to induce mesenchymal-like morphology and molecular features, while cells that had undergone TGF-β-induced EMT reverted to an epithelial-like state upon C/EBPα re-expression. In vivo, mice injected with C/EBPα-expressing breast tumor organoids display a dramatic reduction of metastatic lesions. Collectively, our results show that C/EBPα is required for maintaining epithelial homeostasis by repressing the expression of key mesenchymal markers, thereby preventing EMT-mediated tumorigenesis. These data suggest that C/EBPα is a master epithelial “gatekeeper” whose expression is required to prevent unwarranted mesenchymal transition, supporting an important role for EMT in mediating breast cancer metastasis

    Antigen-driven EGR2 expression is required for exhausted CD8 + T cell stability and maintenance

    Get PDF
    Chronic stimulation of CD8 T cells triggers exhaustion, a distinct differentiation state with diminished effector function. Exhausted cells exist in multiple differentiation states, from stem-like progenitors that are the key mediators of the response to checkpoint blockade, through to terminally exhausted cells. Due to its clinical relevance, there is substantial interest in defining the pathways that control differentiation and maintenance of these subsets. Here, we show that chronic antigen induces the anergy-associated transcription factor EGR2 selectively within progenitor exhausted cells in both chronic LCMV and tumours. EGR2 enables terminal exhaustion and stabilizes the exhausted transcriptional state by both direct EGR2-dependent control of key exhaustion-associated genes, and indirect maintenance of the exhausted epigenetic state. We show that EGR2 is a regulator of exhaustion that epigenetically and transcriptionally maintains the differentiation competency of progenitor exhausted cells. +This work was funded by National Institutes of Health Grant U19-AI100627, the Swiss National Science Foundation and the Novartis Foundation for Medical-Biological Research (S.S.G.), the Australian Cancer Research Foundation (for the Peter Mac Flow Cytometry and Molecular Genomics facilities) and by the National Health and Medical Research Council (NHMRC) through Program Grants 1016953 & 1113904, Ideas Grant APP2001719, Australia Fellowship 585490 (C.C.G.), Senior Principal Research Fellowships (1081858, C.C.G., 1139607, A.K.), and CJ Martin Early Career Fellowship 585518 (I.A.P.)

    Megakaryocyte lineage development is controlled by modulation of protein acetylation

    Get PDF
    Treatment with lysine deacetylase inhibitors (KDACi) for haematological malignancies, is accompanied by haematological side effects including thrombocytopenia, suggesting that modulation of protein acetylation affects normal myeloid development, and specifically megakaryocyte development. In the current study, utilising ex-vivo differentiation of human CD34+ haematopoietic progenitor cells, we investigated the effects of two functionally distinct KDACi, valproic acid (VPA), and nicotinamide (NAM), on megakaryocyte differentiation, and lineage choice decisions. Treatment with VPA increased the number of megakaryocyte/erythroid progenitors (MEP), accompanied by inhibition of megakaryocyte differentiation, whereas treatment with NAM accelerated megakaryocyte development, and stimulated polyploidisation. Treatment with bot

    Global transcriptional analysis identifies a novel role for SOX4 in tumor-induced angiogenesis.

    Get PDF
    The expression of the transcription factor SOX4 is increased in many human cancers, however, the pro-oncogenic capacity of SOX4 can vary greatly depending on the type of tumor. Both the contextual nature and the mechanisms underlying the pro-oncogenic SOX4 response remain unexplored. Here, we demonstrate that in mammary tumorigenesis, the SOX4 transcriptional network is dictated by the epigenome and is enriched for pro-angiogenic processes. We show that SOX4 directly regulates endothelin-1 (ET-1) expression and can thereby promote tumor-induced angiogenesis both in vitro and in vivo. Furthermore, in breast tumors, SOX4 expression correlates with blood vessel density and size, and predicts poor-prognosis in patients with breast cancer. Our data provide novel mechanistic insights into context-dependent SOX4 target gene selection, and uncover a novel pro-oncogenic role for this transcription factor in promoting tumor-induced angiogenesis. These findings establish a key role for SOX4 in promoting metastasis through exploiting diverse pro-tumorigenic pathways

    SOX4 inhibits oligodendrocyte differentiation of embryonic neural stem cells in vitro by inducing Hes5 expression

    No full text
    SOX4 has been shown to promote neuronal differentiation both in the adult and embryonic neural progenitors. Ectopic SOX4 expression has also been shown to inhibit oligodendrocyte differentiation in mice, however the underlying molecular mechanisms remain poorly understood. Here we demonstrate that SOX4 regulates transcriptional targets associated with neural development in neural stem cells (NSCs), reducing the expression of genes promoting oligodendrocyte differentiation. Interestingly, we observe that SOX4 levels decreased during oligodendrocyte differentiation in vitro. Moreover, we show that SOX4 knockdown induces increased oligodendrocyte differentiation, as the percentage of Olig2-positive/2′,3’-Cyclic-nucleotide 3′-phosphodiesterase (CNPase)-positive maturing oligodendrocytes increases, while the number of Olig2-positive oligodendrocyte precursors is unaffected. Conversely, conditional SOX4 overexpression utilizing a doxycycline inducible system decreases the percentage of maturing oligodendrocytes, suggesting that SOX4 inhibits maturation from precursor to mature oligodendrocyte. We identify the transcription factor Hes5 as a direct SOX4 target gene and we show that conditional overexpression of Hes5 rescues the increased oligodendrocyte differentiation mediated by SOX4 depletion in NSCs. Taken together, these observations support a novel role for SOX4 in NSC by controlling oligodendrocyte differentiation through induction of Hes5 expression

    SOX4 inhibits oligodendrocyte differentiation of embryonic neural stem cells in vitro by inducing Hes5 expression

    No full text
    SOX4 has been shown to promote neuronal differentiation both in the adult and embryonic neural progenitors. Ectopic SOX4 expression has also been shown to inhibit oligodendrocyte differentiation in mice, however the underlying molecular mechanisms remain poorly understood. Here we demonstrate that SOX4 regulates transcriptional targets associated with neural development in neural stem cells (NSCs), reducing the expression of genes promoting oligodendrocyte differentiation. Interestingly, we observe that SOX4 levels decreased during oligodendrocyte differentiation in vitro. Moreover, we show that SOX4 knockdown induces increased oligodendrocyte differentiation, as the percentage of Olig2-positive/2′,3’-Cyclic-nucleotide 3′-phosphodiesterase (CNPase)-positive maturing oligodendrocytes increases, while the number of Olig2-positive oligodendrocyte precursors is unaffected. Conversely, conditional SOX4 overexpression utilizing a doxycycline inducible system decreases the percentage of maturing oligodendrocytes, suggesting that SOX4 inhibits maturation from precursor to mature oligodendrocyte. We identify the transcription factor Hes5 as a direct SOX4 target gene and we show that conditional overexpression of Hes5 rescues the increased oligodendrocyte differentiation mediated by SOX4 depletion in NSCs. Taken together, these observations support a novel role for SOX4 in NSC by controlling oligodendrocyte differentiation through induction of Hes5 expression

    qRT-PCR primer sequences used in the biotinylated oligonucleotide pull down assay.

    No full text
    <p>qRT-PCR primer sequences used in the biotinylated oligonucleotide pull down assay.</p
    corecore