108 research outputs found

    A graphical simulation software for instruction in cardiovascular mechanics physiology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computer supported, interactive e-learning systems are widely used in the teaching of physiology. However, the currently available complimentary software tools in the field of the physiology of cardiovascular mechanics have not yet been adapted to the latest systems software. Therefore, a simple-to-use replacement for undergraduate and graduate students' education was needed, including an up-to-date graphical software that is validated and field-tested.</p> <p>Methods</p> <p>Software compatible to Windows, based on modified versions of existing mathematical algorithms, has been newly developed. Testing was performed during a full term of physiological lecturing to medical and biology students.</p> <p>Results</p> <p>The newly developed CLabUZH software models a reduced human cardiovascular loop containing all basic compartments: an isolated heart including an artificial electrical stimulator, main vessels and the peripheral resistive components. Students can alter several physiological parameters interactively. The resulting output variables are printed in x-y diagrams and in addition shown in an animated, graphical model. CLabUZH offers insight into the relations of volume, pressure and time dependency in the circulation and their correlation to the electrocardiogram (ECG). Established mechanisms such as the Frank-Starling Law or the Windkessel Effect are considered in this model. The CLabUZH software is self-contained with no extra installation required and runs on most of today's personal computer systems.</p> <p>Conclusions</p> <p>CLabUZH is a user-friendly interactive computer programme that has proved to be useful in teaching the basic physiological principles of heart mechanics.</p

    Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine

    Full text link
    Absorption of neutral amino acids across the luminal membrane of intestinal enterocytes is mediated by the broad neutral amino acid transporter B0AT1 (SLC6A19). Its intestinal expression depends on co-expression of the membrane-anchored peptidase angiotensin converting enzyme 2 (ACE2) and is additionally enhanced by aminopeptidase N (CD13). We investigated in this study the expression of B0AT1 and its auxiliary peptidases as well as its transport function along the rat small intestine. Additionally, we tested its possible short- and long-term regulation by dietary proteins and amino acids. We showed by immunofluorescence that B0AT1, ACE2 and CD13 co-localize on the luminal membrane of small intestinal villi and by Western blotting that their protein expression increases in distal direction. Furthermore, we observed an elevated transport activity of the neutral amino acid L-isoleucine during the nocturnal active phase compared to the inactive one. Gastric emptying was delayed by intragastric application of an amino acid cocktail but we observed no acute dietary regulation of B0AT1 protein expression and L-isoleucine transport. Investigation of the chronic dietary regulation of B0AT1, ACE2 and CD13 by different diets revealed an increased B0AT1 protein expression under amino acid-supplemented diet in the proximal section but not in the distal one and for ACE2 protein expression a reverse localization of the effect. Dietary regulation for CD13 protein expression was not as distinct as for the two other proteins. Ring uptake experiments showed a tendency for increased L-isoleucine uptake under amino acid-supplemented diet and in vivo L-isoleucine absorption was more efficient under high protein and amino acid-supplemented diet. Additionally, plasma levels of branched-chain amino acids were elevated under high protein and amino acid diet. Taken together, our experiments did not reveal an acute amino acid-induced regulation of B0AT1 but revealed a chronic dietary adaptation mainly restricted to the proximal segment of the small intestine

    Steady-state kinetic characterization of the mouse B0AT1 sodium-dependent neutral amino acid transporter

    Get PDF
    The members of the neurotransmitter transporter family SLC6A exhibit a high degree of structural homology; however differences arise in many aspects of their transport mechanisms. In this study we report that mouse B0AT1 (mouse Slc6a19) mediates the electrogenic transport of a broad range of neutral amino acids but not of the chemically similar substrates transported by other SLC6A family members. Cotransport of L-Leu and Na+ generates a saturable, reversible, inward current with Michaelis-Menten kinetics (Hill coefficient ~1) yielding a K0.5 for L-Leu of 1.16mM and for Na+ of 16mM at a holding potential of −50mV. Changing the membrane voltage influences both substrate binding and substrate translocation. Li+ can substitute partially for Na+ in the generation of L-Leu-evoked inward currents, whereas both Cl− and H+ concentrations influence its magnitude. The simultaneous measurement of charge translocation and L-Leu uptake in the same cell indicates that B0AT1 transports one Na+ per neutral amino acid. This appears to be accomplished by an ordered, simultaneous mechanism, with the amino acid binding prior to the Na+, followed by the simultaneous translocation of both co-substrates across the plasma membrane. From this kinetic analysis, we conclude that the relatively constant [Na+] along the renal proximal tubule both drives the uptake of neutral amino acids via B0AT1 thermodynamically and ensures that, upon binding, these are translocated efficiently into the cel

    CATs and HATs: the SLC7 family of amino acid transporters

    Get PDF
    The SLC7 family is divided into two subgroups, the cationic amino acid transporters (the CAT family, SLC7A1-4) and the glycoprotein-associated amino acid transporters (the gpaAT family, SLC7A5-11), also called light chains or catalytic chains of the hetero(di)meric amino acid transporters (HAT). The associated glycoproteins (heavy chains) 4F2hc (CD98) or rBAT (D2, NBAT) form the SLC3 family. Members of the CAT family transport essentially cationic amino acids by facilitated diffusion with differential trans-stimulation by intracellular substrates. In some cells, they may regulate the rate of NO synthesis by controlling the uptake of l-arginine as the substrate for nitric oxide synthase (NOS). The heterodimeric amino acid transporters are, in contrast, quite diverse in terms of substrate selectivity and function (mostly) as obligatory exchangers. Their selectivity ranges from large neutral amino acids (system L) to small neutral amino acids (ala, ser, cys-preferring, system asc), negatively charged amino acid (system xc −) and cationic amino acids plus neutral amino acids (system y+L and b0,+-like). Cotransport of Na+ is observed only for the y+L transporters when they carry neutral amino acids. Mutations in b0,+-like and y+L transporters lead to the hereditary diseases cystinuria and lysinuric protein intolerance (LPI), respectivel

    Differential impact of dietary branched chain and aromatic amino acids on chronic kidney disease progression in rats

    Full text link
    The metabolism of dietary proteins generates waste products that are excreted by the kidney, in particular nitrogen-containing urea, uric acid, ammonia, creatinine, and other metabolites such as phosphates, sulfates, and protons. Kidney adaptation includes an increase in renal plasma flow (RPF) and glomerular filtration rate (GFR) and represents a burden for diseased kidneys increasing the progression rate of CKD. The present study aimed at identifying potential differences between amino acid (AA) groups constituting dietary proteins regarding their impact on RPF, GFR, and CKD progression. We utilized the well-established 5/6 nephrectomy (5/6 Nx) CKD model in rats and submitted the animals for 5 weeks to either the control diet (18% casein protein) or to diets containing 8% casein supplemented with 10% of a mix of free amino acids, representing all or only a subset of the amino acids contained in casein. Whereas the RPF and GFR measured in free moving animals remained stable during the course of the diet in rats receiving the control mix, these parameters decreased in animals receiving the branched chain amino acid (BCAA) supplementation and increased in the ones receiving the aromatic amino acids (AAAs). In animals receiving essential amino acids (EAAs) containing both BCAAs and AAAs, there was only a small increase in RPF. The kidneys of the 5/6 Nx rats receiving the BCAA diet showed the strongest increase in smooth muscle actin and collagen mRNA expression as a result of higher level of inflammation and fibrosis. These animals receiving BCAAs also showed an increase in plasma free fatty acids pointing to a problem at the level of energy metabolism. In contrast, the animals under AAA diet showed an activation of AMPK and STAT3. Taken together, our results demonstrate that subsets of EAAs contained in dietary proteins, specifically BCAAs and AAAs, exert contrasting effects on kidney functional parameters and CKD progression

    Kidney amino acid transport

    Get PDF
    Near complete reabsorption of filtered amino acids is a main specialized transport function of the kidney proximal tubule. This evolutionary conserved task is carried out by a subset of luminal and basolateral transporters that together form the transcellular amino acid transport machinery similar to that of small intestine. A number of other amino acid transporters expressed in the basolateral membrane of proximal kidney tubule cells subserve either specialized metabolic functions, such as the production of ammonium, or are part of the cellular housekeeping equipment. A new finding is that the luminal Na+-dependent neutral amino acid transporters of the SLC6 family require an associated protein for their surface expression as shown for the Hartnup transporter B0AT1 (SLC6A19) and suggested for the l-proline transporter SIT1 (IMINOB, SLC6A20) and for B0AT3 (XT2, SLC6A18). This accessory subunit called collectrin (TMEM27) is homologous to the transmembrane anchor region of the renin-angiotensin system enzyme ACE2 that we have shown to function in small intestine as associated subunit of the luminal SLC6 transporters B0AT1 and SIT1. Some mutations of B0AT1 differentially interact with these accessory subunits, providing an explanation for differential intestinal phenotypes among Hartnup patients. The basolateral efflux of numerous amino acids from kidney tubular cells is mediated by heteromeric amino acid transporters that function as obligatory exchangers. Thus, other transporters within the same membrane need to mediate the net efflux of exchange substrates, controlling thereby the net basolateral amino transport and thus the intracellular amino acid concentratio

    Kidney mass reduction leads to L‐arginine metabolism‐dependent blood pressure increase in mice

    Get PDF
    Background Uninephrectomy (UNX) is performed for various reasons, including kidney cancer or donation. Kidneys being the main site of L‐arginine production in the body, we tested whether UNX mediated kidney mass reduction impacts L‐arginine metabolism and thereby nitric oxide production and blood pressure regulation in mice. Methods and Results In a first series of experiments, we observed a significant increase in arterial blood pressure 8 days post‐UNX in female and not in male mice. Further experimental series were performed in female mice, and the blood pressure increase was confirmed by telemetry. L‐citrulline, that is used in the kidney to produce L‐arginine, was elevated post‐UNX as was also asymmetric dimethylarginine, an inhibitor of nitric oxide synthase that competes with L‐arginine and is a marker for renal failure. Interestingly, the UNX‐induced blood pressure increase was prevented by supplementation of the diet with 5% of the L‐arginine precursor, L‐citrulline. Because L‐arginine is metabolized in the kidney and other peripheral tissues by arginase‐2, we tested whether the lack of this metabolic pathway also compensates for decreased L‐arginine production in the kidney and/or for local nitric oxide synthase inhibition and consecutive blood pressure increase. Indeed, upon uninephrectomy, arginase‐2 knockout mice (Arg‐2−/−) neither displayed an increase in asymmetric dimethylarginine and L‐citrulline plasma levels nor a significant increase in blood pressure. Conclusions UNX leads to a small increase in blood pressure that is prevented by L‐ citrulline supplementation or arginase deficiency, 2 measures that appear to compensate for the impact of kidney mass reduction on L‐arginine metabolism

    Genetic targeting of arginase-ii in mouse prevents renal oxidative stress and inflammation in diet-induced obesity

    Get PDF
    Obesity is associated with development and progression of chronic kidney disease (CKD). Recent evidence demonstrates that enhanced levels of the L- arginine:ureahydrolase, including the two isoenzymes arginase-I (Arg-I) and arginase- II (Arg-II) in vascular endothelial cells promote uncoupling of endothelial nitric oxide synthase (eNOS), leading to increased superoxide radical anion and decreased NO production thereby endothelial dysfunction. Arg-II but not Arg-I is abundantly expressed in kidney and the role of Arg-II in CKD is uncertain and controversial. We aimed to investigate the role of Arg-II in renal damage associated with diet-induced obesity mouse model. Wild type (WT) C57BL/6 mice and mice deficient in Arg-II gene (Arg-II−/−) were fed with either a normal chow (NC) or a high-fat-diet (HFD) for 14 weeks (starting at the age of 7 weeks) to induce obesity. In WT mice, HFD feeding caused frequent renal lipid accumulation, enhancement of renal reactive oxygen species (ROS) levels which could be attenuated by a NOS inhibitor, suggesting uncoupling of NOS in kidney. HFD feeding also significantly augmented renal Arg-II expression and activity. All the alterations in the kidney under HFD feeding were reduced in Arg-II−/− mice. Moreover, mesangial expansion as analyzed by Periodic Acid Schiff (PAS) staining and renal expression of vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in HFD-fed WT mouse assessed by immunoblotting were reduced in the HFD-fed Arg- II−/− mice, although there was no significant difference in body weight and renal weight/body weight ratio between the WT and Arg-II−/− mice. Thus, Arg-II expression/activity is enhanced in kidney of diet-induced obesity mice. Genetic targeting of Arg-II prevents renal damage associated with obesity, suggesting an important role of Arg-II in obesity-associated renal disease development

    Role of SGK in mineralocorticoid-regulated sodium transport

    Get PDF
    Role of SGK in mineralocorticoid-regulated sodium transport. Mineralocorticoids stimulate electrogenic Na+ transport in tight epithelia by altering the transcription of specific genes. Although the earliest mineralocorticoid effect is to increase the activity of the epithelial sodium channel (ENaC), ENaC mRNA and protein levels do not change. Instead, physiologic observations suggest that a mineralocorticoid target gene(s) encodes an ENaC regulator(s). To begin to identify and characterize mineralocorticoid-regulated target genes, we used suppression-subtractive hybridization to generate a cDNA library from A6 cells, a stable cell line of Xenopus laevis of distal nephron origin. A serine-threonine kinase, SGK, was identified from this screen. Sequence comparison revealed that frog, rat, and human SGK are 92% identical and 96% similar at the amino acid level. SGK mRNA was confirmed by Northern blot to be strongly and rapidly corticosteroid stimulated in A6 cells. In situ hybridization revealed that SGK was strongly stimulated by aldosterone in rat collecting duct but not proximal tubule cells. Low levels of SGK were present in rat glomeruli, but SGK was unregulated in this structure. Finally, SGK stimulated ENaC activity approximately sevenfold when coexpressed in Xenopus laevis oocytes. These data suggest that SGK is an important mediator of aldosterone effects on Na+ transport in tight epithelia. In view of the existence of SGK homologues in invertebrates, it is interesting to speculate that SGK is an ancient kinase that was adapted to the control of epithelial Na+ transport by early vertebrates as they made the transition from a marine to a freshwater environment
    • 

    corecore