115 research outputs found

    Metabolic Alterations in NADSYN1-Deficient Cells

    Get PDF
    NAD synthetase 1 (encoded by the gene NADSYN1) is a cytosolic enzyme that catalyzes the final step in the biosynthesis of nicotinamide adenine dinucleotide (NAD+) from tryptophan and nicotinic acid. NADSYN1 deficiency has recently been added to the spectrum of congenital NAD+ deficiency disorders. To gain insight into the metabolic consequences of NADSYN1 deficiency, the encoding gene was disrupted in A549 and HEK293T cells, and the metabolome was profiled in the presence of different NAD+ precursors, including tryptophan, nicotinamide and nicotinic acid. We demonstrate that when precursors of the NAD+ salvage pathway in the form of nicotinamide become limiting, NADSYN1 deficiency results in a decline in intracellular NAD+ levels even in the presence of other potential NAD+ sources such as tryptophan and nicotinic acid. As a consequence, alterations in 122 and 69 metabolites are observed in NADSYN1-deficient A549 and HEK293T cells compared to the wild-type cell line (FC > 2 and p < 0.05). We thus show that NADSYN1 deficiency results in a metabolic phenotype characterized by alterations in glycolysis, the TCA cycle, the pentose phosphate pathway, and the polyol pathway

    Impaired Cognitive Functioning in Patients with Tyrosinemia Type I Receiving Nitisinone

    Get PDF
    ObjectiveTo examine cognitive functioning in patients with tyrosinemia type I treated with nitisinone and a protein-restricted diet.Study designWe performed a cross-sectional study to establish cognitive functioning in children with tyrosinemia type I compared with their unaffected siblings. Intelligence was measured using age-appropriate Wechsler Scales. To assess cognitive development over time, we retrieved sequential IQ scores in a single-center subset of patients. We also evaluated whether plasma phenylalanine and tyrosine levels during treatment was correlated with cognitive development.ResultsAverage total IQ score in 10 patients with tyrosinemia type I receiving nitisinone was significantly lower compared with their unaffected siblings (71 ± 13 vs 91 ± 13; P = .008). Both verbal and performance IQ subscores differed (77 ± 14 vs 95 ± 11; P < .05 and 70 ± 11 vs 87 ± 15; P < .05, respectively). Repeated IQ measurements in a single-center subset of 5 patients revealed a decline in average IQ score over time, from 96 ± 15 to 69 ± 11 (P < .001). No significant association was found between IQ score and either plasma tyrosine or phenylalanine concentration.ConclusionPatients with tyrosinemia type I treated with nitisinone are at risk for impaired cognitive function despite a protein-restricted diet

    Accurate discrimination of Hartnup disorder from other aminoacidurias using a diagnostic ratio

    Get PDF
    Introduction: Hartnup disorder is caused by a deficiency of the sodium dependent B 0 AT1 neutral amino acid transporter in the proximal kidney tubules and jejunum. Biochemically, Hartnup disorder is diagnosed via amino acid excretion patterns. However, these patterns can closely resemble amino acid excretion patterns of generalized aminoaciduria, which may induce a risk for misdiagnosis and preclusion from treatment. Here we explore whether calculating a diagnostic ratio could facilitate correct discrimination of Hartnup disorder from other aminoacidurias. Methods: 27 amino acid excretion patterns from 11 patients with genetically confirmed Hartnup disorder were compared to 68 samples of 16 patients with other aminoacidurias. Amino acid fold changes were calculated by dividing the quantified excretion values over the upper limit of the age-adjusted reference value. Results: Increased excretion of amino acids is not restricted to amino acids classically related to Hartnup disorder ("Hartnup amino acids", HAA), but also includes many other amino acids, not classically related to Hartnup disorder ("other amino acids", OAA). The fold change ratio of HAA over OAA was 6.1 (range: 2.4-9.6) in the Hartnup cohort, versus 0.2 (range: 0.0-1.6) in the aminoaciduria cohort ( p < .0001), without any overlap observed between the cohorts. Discussion: Excretion values of amino acids not classically related to Hartnup disorder are frequently elevated in patients with Hartnup disorder, which may cause misdiagnosis as generalized aminoaciduria and preclusion from vitamin B3 treatment. Calculation of the HAA/OAA ratio improves diagnostic differentiation of Hartnup disorder from other aminoacidurias

    Assessing the Pre-Analytical Stability of Small-Molecule Metabolites in Cerebrospinal Fluid Using Direct-Infusion Metabolomics

    Get PDF
    Metabolomics studies aiming to find biomarkers frequently make use of historical or multicenter cohorts. These samples often have different pre-analytical conditions that potentially affect metabolite concentrations. We studied the effect of different storage conditions on the stability of small-molecule metabolites in cerebrospinal fluid to aid a reliable interpretation of metabolomics data. Three cerebrospinal fluid pools were prepared from surplus samples from the Amsterdam Dementia Cohort biobank. Aliquoted pools were exposed to different storage conditions to assess the temperature and freeze/thaw stability before final storage at -80 °C: storage up to four months at -20 °C and up to one week at either 5-8 °C or 18-22 °C and exposure to up to seven freeze/thaw cycles. Direct-infusion high-resolution mass spectrometry was performed, resulting in the identification of 1852 m/z peaks. To test the storage stability, principal component analyses, repeated measures analysis of variance, Kruskal‒Wallis tests, and fold change analyses were performed, all demonstrating that small-molecule metabolites in the cerebrospinal fluid (CSF) are relatively unaffected by 1‒3 freeze/thaw cycles, by storage at -20 °C up to two months, by storage at 5-8 °C for up to 72 h, or by storage at 18-22 °C for up to 8 h. This suggests that these differences do not affect the interpretation of potential small-molecule biomarkers in multicenter or historical cohorts and implies that these cohorts are suitable for biomarker studies

    Direct Infusion Mass Spectrometry to Rapidly Map Metabolic Flux of Substrates Labeled with Stable Isotopes

    Get PDF
    Direct infusion-high-resolution mass spectrometry (DI-HRMS) allows for rapid profiling of complex mixtures of metabolites in blood, cerebrospinal fluid, tissue samples and cultured cells. Here, we present a DI-HRMS method suitable for the rapid determination of metabolic fluxes of isotopically labeled substrates in cultured cells and organoids. We adapted an automated annotation pipeline by selecting labeled adducts that best represent the majority of 13C and/or 15N-labeled glycolytic and tricarboxylic acid cycle intermediates as well as a number of their derivatives. Furthermore, valine, leucine and several of their degradation products were included. We show that DI-HRMS can determine anticipated and unanticipated alterations in metabolic fluxes along these pathways that result from the genetic alteration of single metabolic enzymes, including pyruvate dehydrogenase (PDHA1) and glutaminase (GLS). In addition, it can precisely pinpoint metabolic adaptations to the loss of methylmalonyl-CoA mutase in patient-derived liver organoids. Our results highlight the power of DI-HRMS in combination with stable isotopically labeled compounds as an efficient screening method for fluxomics

    Untargeted metabolic analysis in dried blood spots reveals metabolic signature in 22q11.2 deletion syndrome

    Get PDF
    The 22q11.2 deletion syndrome (22q11.2DS) is characterized by a well-defined microdeletion and is associated with increased risk of neurodevelopmental phenotypes including autism spectrum disorders (ASD) and intellectual impairment. The typically deleted region in 22q11.2DS contains multiple genes with the potential of altering metabolism. Deficits in metabolic processes during early brain development may help explain the increased prevalence of neurodevelopmental phenotypes seen in 22q11.2DS. However, relatively little is known about the metabolic impact of the 22q11.2 deletion, while such insight may lead to increased understanding of the etiology. We performed untargeted metabolic analysis in a large sample of dried blood spots derived from 49 22q11.2DS patients and 87 controls, to identify a metabolic signature for 22q11.2DS. We also examined trait-specific metabolomic patterns within 22q11.2DS patients, focusing on intelligence (intelligence quotient, IQ) and ASD. We used the Boruta algorithm to select metabolites distinguishing patients from controls, patients with ASD from patients without, and patients with an IQ score in the lowest range from patients with an IQ score in the highest range. The relevance of the selected metabolites was visualized with principal component score plots, after which random forest analysis and logistic regression were used to measure predictive performance of the selected metabolites. Analysis yielded a distinct metabolic signature for 22q11.2DS as compared to controls, and trait-specific (IQ and ASD) metabolomic patterns within 22q11.2DS patients. The metabolic characteristics of 22q11.2DS provide insights in biological mechanisms underlying the neurodevelopmental phenotype and may ultimately aid in identifying novel therapeutic targets for patients with developmental disorders

    Untargeted metabolic profiling in dried blood spots identifies disease fingerprint for pyruvate kinase deficiency

    Get PDF
    The diagnostic evaluation and clinical characterization of rare hereditary anemia (RHA) is to date still challenging. In particular, there is little knowledge of the broad metabolic impact of many of the molecular defects underlying RHA. In this study we explored the potential of untargeted metabolomics to diagnose a relatively common type of RHA: pyruvate kinase deficiency (PKD). In total, 1,903 unique metabolite features were identified in dried blood spot samples from 16 PKD patients and 32 healthy controls. A metabolic fingerprint was identified using a machine learning algorithm, and subsequently a binary classification model was designed. The model showed high performance characteristics (AUC 0.990, 95% CI: 0.981-0.999) and an accurate class assignment was achieved for all newly added control (n=13) and patient samples, (n=6) with the exception of one patient (accuracy 94%). Important metabolites in the metabolic fingerprint included glycolytic intermediates, polyamines and several acyl carnitines. In general, the application of untargeted metabolomics in dried blood spots is a novel functional tool that holds promise for the diagnostic stratification and studies on the disease pathophysiology in RHA

    Clinical relevance of testing for metabolic vitamin B12 deficiency in patients with polyneuropathy

    Get PDF
    Objective: Determine vitamin B12 threshold levels below which additional testing of methylmalonic acid (MMA) and/or homocysteine (Hcy) is useful to diagnose metabolic vitamin B12 deficiency in patients with polyneuropathy, and how vitamin B12, MMA and Hcy levels relate to the effect of supplementation therapy. Methods: In a retrospective cohort study of 331 patients with polyneuropathy, vitamin B12, MMA and Hcy were measured. Linear regression models with vitamin B12 as dependent and Hcy or MMA as covariate were compared, to assess which was best related to vitamin B12. Threshold vitamin B12 levels for metabolic deficiency (defined as elevatede metabolites) were determined using logistic regression with elevated metabolites as dependent and vitamin B12 as covariate. A structured interview was conducted in 42 patients to evaluate response to vitamin B12 supplementation. Results: MMA was best related to vitamin B12. Using elevated MMA for metabolic deficiency, we found 90% sensitivity at a vitamin B12 threshold level <264 pmol/L (358 pg/mL) and 95% sensitivity at <304 pmol/L (412 pg/mL). Improvement after supplementation was reported by 19% patients and stabilization by 24%. 88% of patients with improvement and 90% with stabilization either had absolute deficiency (Vitamin B12 < 148 pmol/L) or metabolic deficiency (elevated MMA and vitamin B12 ≥ 148 pmol/L). There were no additional patients with improvement or stabilization with isolated elevated Hcy. Conclusion: Testing of MMA has additional value in identifying patients with clinically relevant metabolic deficiency when vitamin B12 is below 304 pmol/L (412 pg/mL). Supplementation can be effective in patients with absolute and metabolic deficiency
    • …
    corecore