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Key points: 

• We identified a metabolic fingerprint for patients with Pyruvate Kinase Deficiency 
using untargeted metabolomics in dried blood spots. 

• This approach opens up a novel area of diagnosis and research in the field of red 
blood cell disorders. 

 

Abstract: 

The diagnostic evaluation and clinical characterization of rare hereditary anemia (RHA) 

is to date still challenging. In particular, there is little knowledge on the broad metabolic 

impact of many of the molecular defects underlying RHA. In this study we explored the 

potential of untargeted metabolomics to diagnose a relatively common type of RHA: 

Pyruvate Kinase Deficiency (PKD). In total, 1903 unique metabolite features were 

identified in dried blood spot samples from 16 PKD patients and 32 healthy controls. A 

metabolic fingerprint was identified using a machine learning algorithm, and 

subsequently a binary classification model was designed. The model showed high 

performance characteristics (AUC 0.990, 95%CI 0.981-0.999) and an accurate class 

assignment was achieved for all newly added control (13) and patient samples (6), with 

the exception of one patient (accuracy 94%).  Important metabolites in the metabolic 

fingerprint included glycolytic intermediates, polyamines and several acyl carnitines.  In 

general, the application of untargeted metabolomics in dried blood spots is a novel 

functional tool that holds promise for diagnostic stratification and studies on disease 

pathophysiology in RHA.  
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Introduction: 

The group of rare hereditary anemias (RHA) includes a large variety of intrinsic defects 

of the red blood cell and erythropoiesis. Our knowledge of the pathophysiology of RHA 

has recently vastly improved, powered by genetic testing and subsequent increased 

knowledge of underlying molecular defects.1-4 However, in a substantial number of 

patients, the clinical phenotype does not fit classical criteria of disease, response to 

therapy is unexpectedly poor, or a molecular defect cannot be identified.5-7 In addition, 

in patients with well-described genetic defects, there is often no clear genotype-

phenotype correlation.7-9 

Pyruvate kinase deficiency (PKD; OMIM 266 200), the most common red cell glycolytic 

enzyme defect, is no exception in this respect. The clinical phenotype of PKD varies 

widely, from a well-compensated hemolytic anemia to severe hemolysis and neonatal 

mortality. Currently the diagnosis of PKD relies on measurement of PK activity and/or 

the identification of homozygous or compound heterozygous mutations in the PKLR 

gene.10,11  

However, in a significant number of patients only one mutation is identified. In addition, 

the exact mechanisms leading to reduced lifespan of PK-deficient erythrocytes are still 

largely unknown. Thus, in order to improve diagnostic evaluation as well as our 

understanding of PKD pathophysiology and the genotype-to-phenotype correlation, 

novel functional tests are needed. 

In this study we demonstrate the potential of untargeted metabolomics in dried blood 

spots (DBS) in the diagnostic evaluation of PKD and report for the first time a metabolic 

fingerprint for PKD.  
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Methods: 

Samples: 

16 patients diagnosed with PKD based on clinical phenotype, enzyme activity assays 

and molecular defect were included. Healthy controls (HC; institutional blood donor 

service) served as controls. All patients or their legal guardians approved the use of 

remnant samples for method development and validation, in agreement with institutional 

and national regulations. All procedures followed were in accordance with the ethical 

standards of the University Medical Center Utrecht and with the Helsinki Declaration of 

1976, as revised in 2000. For DBS, 50 µL aliquots were spotted onto Guthrie card filter 

paper (Whatman no. 903 Protein Saver TM cards). All papers were left to dry for at least 

four hours at room temperature, and subsequently stored at -80⁰C in a foil bag with a 

desiccant package pending further analysis. 

Metabolic profiling 

Sample preparation, direct infusion high resolution mass spectrometry (DI-HRMS) and 

data processing was performed as previously reported.12, 13 Mass peak intensities for 

metabolite annotation were averaged over technical triplicates. In addition, as DI-HRMS 

is unable to separate isomers, mass peak intensities consisted of summed intensities of 

these isomers. Metabolite annotation was performed using a peak calling bioinformatics 

pipeline developed in R programming software, based on  the human metabolome 

database (version 3.6) (https://github.com/UMCUGenetics/DIMS). This resulted in 3835 

metabolite annotations corresponding to 1903 unique metabolite features.14  

To compare the metabolic profiles between HC and PKD, mass peak intensities for 

each identified feature were converted to Z-scores. These scores, based on metabolic 

control samples that were added to each DI-HRMS run,  were calculated by the 

following formula: 
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‡Metabolic controls exist of a batch of banked DBS samples from individuals in whom an inborn error of 

metabolism (IEM) was excluded after an extensive diagnostic workup.  

 

Data analysis 

T-test and multivariate analysis were conducted in MetaboAnalyst.15 Classification of 

data was performed in R-software (Version 3.6.1) using the caret package, which 

contains a set of data processing functions that facilitate the generation of predictive 

models. Support vector machine (SVM) with linear kernel was used for the classification 

of HC and PKD samples. SVM algorithms use a set of mathematical functions that are 

defined as the kernel. The function of kernel is to take data as input and transform it into 

the required form, for example a linear or polynomial kernel. We applied SVM with a 

linear kernel, the simplest kernel function, to perform the classification of HC and PKD. 

SVM with linear kernel is a supervised machine learning model that uses a classification 

method, which is based on mapping the data into a high dimensional space.  

This allows the separation of two groups of samples into distinctive regions by the 

identification of a small fraction of samples that separates the groups, also referred to 

as ‘support vectors’. Separation can be achieved by identifying a separating hyperplane, 

or decision boundary, between the support vectors.16 Classification of the test set was 

determined by projecting each of the new samples into this space.  Data and R code 

are available upon request. 

Results  

Explorative untargeted metabolomics analysis  

A total of 1903 unique metabolite features (and their respective isomers) were analyzed 

for 16 PKD patients and 32 HC-samples. Clinical and laboratory characteristics, and 

baseline comparison are summarized in Table 1. The most significant differences 

between groups, identified by a t-test, included glycolytic intermediates like 

phosphoenolpyruvic acid and 2-/3-phosphoglyceric acid, polyamines (spermidine and 

spermine) and several acyl carnitines (methylmalonylcarnitine and propionylcarnitine) 

(Figure 1A). Broad data exploration to assess the variation between samples and 
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separation between groups was performed by unsupervised principal component 

analysis (PCA) and supervised partial least square discriminant analysis (PLS-DA), the 

latter taking group label into account as a response variable. Both analyses revealed 

close clustering of control samples and a more heterogeneous delineation for PKD 

patients (Supplemental Figure 1.).  

Machine learning algorithm identifies metabolic profile for PKD 

To explore the potential of this extensive metabolic fingerprint in predicting PKD a 

binary classification model was constructed using a support vector machine (SVM) with 

linear kernel. SVM has advantages over PLS-DA with regard to robustness to outliers, 

resistance to overfitting and predictive power.16 An optimal hyperplane to separate 

classes based on all metabolomics data was determined by cross validation (4-fold, 5 

repeats). The final model had high performance characteristics with an average 

accuracy of 96%.   

In addition, receiver operator characteristic curves with area under the curve were used 

as performance indicator (Supplemental Figure 2A). Important features for classification 

in this model include the polyamines spermidine and spermine, as well as 

phosphoenolpyruvic acid,  

2-/3-phosphoglyceric acid and glutathione (Figure 1B).  Most of these features were 

increased in PKD, with the exception of glutathione and asparaginyl-proline/prolyl-

asparagine (Figure 1C). 

 

Metabolic profile predicts new samples with high accuracy  

External model validation was performed by predicting new control (n=13) and PKD-

samples (n=6). This resulted in accurate prediction for all controls, and all but one 

patient (Accuracy = 94%) (Figure 1D).  To assess uncertainty of the model and its 

predictive ability, bootstrap resampling was applied to the complete dataset. By 

randomly generating training and validation (test) data from the original data, a similarly 

high prediction performance was achieved, supporting the validity of the presented 

model (Supplemental Figure 2B). 
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Metabolic profiles reflect PKD disease severity  

To explore the heterogeneity of PKD metabolic profiles in relation to clinical phenotype, 

PCA and  PLS-DA were performed for the entire group of patients and controls. Based 

on presence of spleen and transfusion frequency phenotypes were distinguished as 

mild, moderate and severe. Most resemblance to controls in metabolic profile was clear 

for mild phenotypes, followed by severely affected patients (Supplementary Figure 4).  

 

Discussion 

In this study we have performed untargeted metabolomics on dried blood spots and 

report for the first time a metabolic disease fingerprint for PKD. By establishing a 

predictive machine learning model, the diagnostic potential of this approach was 

demonstrated. This metabolic fingerprint has potential to mature into a powerful clinical 

tool, capable of confirming or ruling out the diagnosis of PKD. However, the limitations 

of machine learning models were also demonstrated by the incorrect classification of 

one PKD patient who was homozygous for the common p.(Arg510Gln) mutation.17 

Clinically, this patient exhibited very mild phenotypic features.  As confirmed by the 

clinical severity PLS-DA, patients with a mild phenotype and controls overlap most in 

their DBS-metabolome (Supplementary Figure 4). Since ~30% of the initial cohort 

consists of such mildly affected patients, this could further explain why PCA and PLS-

DA were unable to achieve separation between groups.  

Interestingly, severely affected patients who are heavily transfused (>6 erythrocyte 

transfusions in the past 12 months) despite having underwent a splenectomy, still 

showed a clearly distinctive metabolic profile compared to HC’s and two of them were 

furthermore correctly assigned as patients (Figure 1D, Supplementary Table 1). 

Although numbers are modest and further studies are needed, this indicates that this 

approach is reliable even in the setting of transfusions. 

Our approach using untargeted metabolomics provides novel insights regarding the 

broad metabolic impact of PKD that could be relevant to better understand the etiology 

of PKD-related symptoms. While glycolytic metabolites and their disturbance have been 
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characterized to some extent, little is known regarding the broad scale impact of PKD 

on metabolism. In this respect, the identification of novel distinctive metabolites, such as 

polyamines, which have been found to stabilize the red blood cell (RBC) plasma 

membrane,18 and acyl carnitines, which are involved in turnover and repair of the RBC 

membrane,19 are promising starting points for further study into PKD pathophysiology.  

We here report for the first time a metabolic profile for PKD obtained from dried whole 

blood spots. This approaches the integrated disease specific metabolome to a greater 

extent compared to the exclusive investigation of the red blood cell metabolome.20, 21  

In addition, this analysis requires only 50 µL of whole blood and can be obtained in a 

minimally invasive manner by sampling a single blood drop, making it very attractive for 

(international) sample exchange. Further advantages of DI-HRMS include relatively 

uncomplicated sample extraction steps and a short run-time of 3 minutes per sample.  

The rise of ‘omic’ approaches in the recent past has provided new opportunities for 

understanding and classifying a wide range of disorders. In contrast to conventional 

medical biology approaches, which focus on individual genes, proteins or metabolites, 

modern biology regards diseases as a complex, dynamic and especially integrated 

network.22 Our study, demonstrates the potential diagnostic application of untargeted 

metabolomics for PKD. However, the current model was constructed for the binary 

classification of healthy controls and PKD patients. Future applications, including more 

samples from various types of RHA could enable development of an algorithm which is 

suited for the broader differential diagnosis of RHA in patients.   

In conclusion, we demonstrate by proof of principle for PKD, that untargeted 

metabolomics in DBS is a novel functional tool to identify disease fingerprints and study 

pathophysiology in RHA.   

This approach opens up a novel area of diagnosis and research in the field of red blood 

cell disorders and has the potential to improve diagnostic evaluation and clinical 

management of patients.  
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Tables & Figures 

Table 1A. Clinical characteristics of PKD patients and baseline comparison to healthy controls 
Age 
(yrs) 

Gender Hb 
(mmol/L) 

RBC 
(x1012/L) 

Retics 
(x109/L) 

WBC 
(x109/L) 

Plts 
(x109/L) 

Treatment  Allele 1 Allele 2 

65 female 6.4 2.84 1014 7.3 576 splenectomy; no current treatment  c.1178A>G; p.(Asn393Ser) not identified  

2 female 4.8 2.59 343 13.4 345 regular transfusions  c.331G>A; p.(Gly111Arg) c.331G>A; p.(Gly111Arg) 

6 female 6.6 3.79 431 10.6 645 splenectomy; sporadic transfusion c.331G>A; p.(Gly111Arg) c.331G>A; p.(Gly111Arg) 

51 female 9.1 5.26 37.8 4.97 188 no current treatment  c.1456C>T; p(Arg486Trp) c.1529G>A; p.(Arg510Gln) 

28 male 5.0 2.27 1011 21.1 ND splenectomy; sporadic transfusion c.1073G>A; p.(Gly358Glu) c.1073G>A; p.(Gly358Glu) 

29 female 6.3 2.99 180 7.1 239 no current treatment  c.142_159del; p.(Thr48_Thr53 del) c.1269G>A; p.(?) 

23 female 6.3 2.52 ND 10.0 696 splenectomy; no current treatment  c.1269G>A; p.([Met373_Ala423del;0]) c.1654G>A; p.(Val553Met) 

35 male 6.2 3.45 198 5.5 179 no current treatment  c.194T>C; p.(Met65Thr) c.721G>T; p.(Glu241*) 

48 female 4.1 1.79 694 9.8 657 splenectomy; no current treatment  c.1462C>T; p(Arg488*) c.1529G>A; p(Arg510Gln) 

25 male 8.4 3.76 627 12.4 732 splenectomy; no current treatment  c.142_159del; p.(Thr48_Thr53 del) c.494G>T(p.Gly165Val) 

48 male 5.4 2.18 945 13.1 876 splenectomy; no current treatment  c.376-2A>C; p. (?)  c.1529G>A; p. (Arg510Gln) 

21 male 7.2 3.60 181 5.5 245 no current treatment  c.390_392het_delCAT; p.(Ile131del) c.1456C>T; p(Arg486Trp) 

51 female 5.6 2.86 950 12.3 719 splenectomy; regular transfusions c.507+1G>A; p.[=;0] c.1436G>A; p.(Arg479His) 

24 male ND ND ND ND ND splenectomy; no current treatment  c.694G>T; p.(Gly232Cys) c.1529G>A; p. (Arg510Gln) 

20 female 7.2 3.60 112 6.4 186 regular transfusions  c.1529G>A; p.(Arg510Gln)  c.1705C>T; p.(Arg569Trp)** 

46 male 7.6 3.74 204 6.0 327 no current treatment  c.1121T>C; p.(Leu374Pro) c.1706G>A; p.(Arg569Glu) 
         

Normal range* 7.4-10.7 3.6-5.5 25-120 4.0-13.5 150-450    
*Age and gender dependent        

** A third and rare  mutation (c. 1639C>T; p(Arg547Cys)) with uncertain pathogenicity was identified in this patient 
 
Table 1B. Baseline comparison to controls      

 PKD HC      
Age (years) 32.6 ± 17.4 38.9 ± 12.8      
Hb (mmol/L) 6.41 ± 1.35 9.12 ± 0.7      
Retics (x109/L) 494.8 ± 367.5 58.6 ± 22.4      
Median time to DBS (hours) 2.33 2.21       
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Table 1. Clinical characteristics of PKD patients and baseline comparison to healthy controls. 

A. Clinical characteristics of PKD patients regarding age, gender, Hemoglobin (Hb), Red blood cell count (RBC) , Reticulocyte count (Retics), White blood cell 

count (WBC), platelets (Plts), treatment and genetic diagnostics. Regular transfusions are defined as ≥6 per 12 months.  ND = not determined. B. Comparison 

of age, Hb, Retics and time between blood withdrawal and spotting (time to DBS) between healthy controls (HC) and PKD patients. Data are presented as 

mean ± SD, except for time to time to DBS which is presented as the median. 

 



14 

 

Figure Legends: 

Figure 1. Univariate and multivariate analysis of untargeted metabolomics data 

from PKD patients and healthy controls 

A. Heatmap of top 35 significant features identified by t-test (p-value cutoff =0.05). The heatmap was 

created using Euclidean ward clustering with autoscaling of features. B. Top 20 important features 

represented as percentage identified by support vector machine classification. As isomers could not be 

distinguished using DI-HRMS, the annotated numbers near the important features indicate the amount of 

isomers. In addition, letters in the footnote correspond to the following isomers:  a)  N8-Acetylspermidine, 

b) 1,4-Butanediammonium, c) 3-phosphoglyceric acid; 2-phospho-D-glyceric acid; (2R)-2-Hydroxy-3-

(phosphonatooxy)propanoate, d) Alanyl-Glutamine; Alanyl-Gamma-glutamate; Glutaminyl-Alanine; 

Gamma-glutamyl-Alanine, e) MG(16:1(9Z)/0:0/0:0), f) Asparaginyl-Alanine; Glutaminyl-Glycine; Glycyl-

Glutamine; Glycycl-Gamma-glutamate; Gamma-glutamyl-Glycine, g) N-Acetyl-D-glucosamine; Beta-N-

Acetylglucosamine; N-Acetyl-b-D-galactosamine; N-Acetylmannosamine, h) N-Acetyl-a-neuraminic acid, 

i) Prolyl-Asparagine. C. Boxplots of each feature showing Z-scores for control and PKD groups, 

respectively. D. Confusion matrix for the prediction of additional samples by the SVM model. 
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Supplementary Table 1. Clinical characteristics of additional PKD patients (test-cohort) 

Age 
(yrs) 

Gender Hb 
(mmol/l) 

RBC 
(x1012/L) 

Retics 
(x109/L) 

WBC 
(x109/L) 

Plts 
(x109/L) 

Treatment  Allele 1 Allele 2 

43 female 5.5 2.20 1045 11.6 714 splenectomy; no current treatment  c.401T>A; p.(Val134Asp) c.1529G>A; p.(Arg510Gln) 

44 female 5.7 2.75 756 9.3 841 splenectomy; regular transfusions c.283G>A; p.(Gly95Arg) c.401T>A; p.(Val134Asp) 

32 female 6.5 3.49 338 9 464 splenectomy; regular transfusions c.283G>A; p.(Gly95Arg) c.401T>A; p.(Val134Asp) 

26 male 5.0 2.33 930 15.7 780 splenectomy; sporadic transfusion c.721C>T; p.(Glu241*) c.1529G>A; p.(Arg510Gln) 

4 female 7.6 4.00 194 7.8 275 no current treatment c.1529G>A; p.(Arg510Gln) c.1529G>A; p.(Arg510Gln) 

54 male 6.2 3.08 166 5.3 150 no current treatment c.142_159del; p.(Thr48_Thr53 del)  c.376-2A>C; p.(?) 

          

Normal range* 7.4-10.7 3.6-5.5 25-120 4.0-13.5 150-450    

Abbrevations: Hb = hemoglobin, Retics = reticulocytes, Plts = platelets. Regular transfusions defined as ≥6 per 12 months. 
Italic: patient who was predicted as control in predictive algorithm 



 

Supplementary Figure 1. Scores plots for PCA and PLS-DA  

A) Principal component analysis (PCA) of PKD and control groups. B)  Partial least square 

discriminant analysis (PLS-DA) of PKD and control groups.   

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Figure 2. Receiver Operator Characteristic curves (ROC) for classification of  

training and test sets by SVM models.  

A. Classification performance of samples in training and test set according to AUC. Note that AUC 

is a measure of the ability to rank samples according to the probability of class membership, 

meaning that even falsely classified samples can have a higher rank towards the correct class 

compared to other samples. B. Classification performance of samples in bootstrap models 

(n=100) of the complete data set.  

 

 

 

 

 

 



 

Supplementary Figure 3. Multivariate analysis with distinction of phenotype severity 

A. PCA plot, and B. PLS-DA plot distinguishing between disease phenotypes based on transfusion 

dependence and splenectomy. Most resemblance in metabolic profile is clear for mild 

phenotypes, followed by severely affected PKD patients (possibly related to interference of 

frequent transfusions). 

 

 

   

 

 


