217 research outputs found

    The JmjC domain protein Epe1 prevents unregulated assembly and disassembly of heterochromatin

    Get PDF
    Heterochromatin normally has prescribed chromosomal positions and must not encroach on adjacent regions. We demonstrate that the fission yeast protein Epe1 stabilises silent chromatin, preventing the oscillation of heterochromatin domains. Epe1 loss leads to two contrasting phenotypes: alleviation of silencing within heterochromatin and expansion of silent chromatin into neighbouring euchromatin. Thus, we propose that Epe1 regulates heterochromatin assembly and disassembly, thereby affecting heterochromatin integrity, centromere function and chromosome segregation fidelity. Epe1 regulates the extent of heterochromatin domains at the level of chromatin, not via the RNAi pathway. Analysis of an ectopically silenced site suggests that heterochromatin oscillation occurs in the absence of heterochromatin boundaries. Epe1 requires predicted iron- and 2-oxyglutarate (2-OG)-binding residues for in vivo function, indicating that it is probably a 2-OG/Fe(II)-dependent dioxygenase. We suggest that, rather than being a histone demethylase, Epe1 may be a protein hydroxylase that affects the stability of a heterochromatin protein, or protein–protein interaction, to regulate the extent of heterochromatin domains. Thus, Epe1 ensures that heterochromatin is restricted to the domains to which it is targeted by RNAi

    Meiotic Recombination Hotspots of Fission Yeast Are Directed to Loci that Express Non-Coding RNA

    Get PDF
    Polyadenylated, mRNA-like transcripts with no coding potential are abundant in eukaryotes, but the functions of these long non-coding RNAs (ncRNAs) are enigmatic. In meiosis, Rec12 (Spo11) catalyzes the formation of dsDNA breaks (DSBs) that initiate homologous recombination. Most meiotic recombination is positioned at hotspots, but knowledge of the mechanisms is nebulous. In the fission yeast genome DSBs are located within 194 prominent peaks separated on average by 65-kbp intervals of DNA that are largely free of DSBs.). Furthermore, we tested and rejected the hypothesis that the ncRNA loci and DSB peaks localize preferentially, but independently, to a third entity on the chromosomes.Meiotic DSB hotspots are directed to loci that express polyadenylated ncRNAs. This reveals an unexpected, possibly unitary mechanism for what directs meiotic recombination to hotspots. It also reveals a likely biological function for enigmatic ncRNAs. We propose specific mechanisms by which ncRNA molecules, or some aspect of RNA metabolism associated with ncRNA loci, help to position recombination protein complexes at DSB hotspots within chromosomes

    A Pre-mRNA–Associating Factor Links Endogenous siRNAs to Chromatin Regulation

    Get PDF
    In plants and fungi, small RNAs silence gene expression in the nucleus by establishing repressive chromatin states. The role of endogenous small RNAs in metazoan nuclei is largely unknown. Here we show that endogenous small interfering RNAs (endo-siRNAs) direct Histone H3 Lysine 9 methylation (H3K9me) in Caenorhabditis elegans. In addition, we report the identification and characterization of nuclear RNAi defective (nrde)-1 and nrde-4. Endo-siRNA–driven H3K9me requires the nuclear RNAi pathway including the Argonaute (Ago) NRDE-3, the conserved nuclear RNAi factor NRDE-2, as well as NRDE-1 and NRDE-4. Small RNAs direct NRDE-1 to associate with the pre-mRNA and chromatin of genes, which have been targeted by RNAi. NRDE-3 and NRDE-2 are required for the association of NRDE-1 with pre-mRNA and chromatin. NRDE-4 is required for NRDE-1/chromatin association, but not NRDE-1/pre-mRNA association. These data establish that NRDE-1 is a novel pre-mRNA and chromatin-associating factor that links small RNAs to H3K9 methylation. In addition, these results demonstrate that endo-siRNAs direct chromatin modifications via the Nrde pathway in C. elegans

    Drosophila Argonaute-1 is critical for transcriptional cosuppression and heterochromatin formation

    Get PDF
    Argonaute-1 (Ago-1) plays a crucial role in gene regulation and genome stability via biogenesis of small non-coding RNAs. Two “Argonaute” family genes, piwi and Ago-2 in Drosophila are involved in multiple silencing mechanisms in the nucleus, transgene cosuppression, long-distant chromosome interaction, nuclear organization and heterochromatin formation. To investigate whether Ago-1 also plays a similar role, we have generated a series of Ago-1 mutations by excising P element, inserted in the Ago-1 promoter (Ago-1k08121). AGO-1 protein is distributed uniformly in the nucleus and cytosol in early embryos but accumulated predominantly in the cytoplasm during the gastrulation stage. Repeat induced silencing produced by the mini-white (mw) array and transcriptional cosuppression of non-homologous transgenes Adh-w/w-Adh was disrupted by Ago-1 mutation. These effects of Ago-1 are distict from its role in microRNA processing because Dicer-1, a critical enzyme for miRNA biogenesis, has no role on the above silencing. Reduction of AGO-1 protein dislodged the POLYCOMB, EZ (enhancer of zeste) and H3me3K27 binding at the cosuppressed Adh-w transgene insertion sites suggesting its role in Polycomb dependent cosuppression. An overall reduction of methylated histone H3me2K9 and H3me3K27 from the polytene nuclei precisely from the mw promoters was also found that leads to concomitant changes in the chromatin structure. These results suggest a prominent role of Ago-1 in chromatin organization and transgene silencing and demonstrate a critical link between transcriptional transgene cosuppression, heterochromatin formation and chromatin organization. We propose Drosophila Ago-1 as a multifunctional RNAi component that interconnects at least two unrelated events, chromatin organization in the nucleus and microRNA processing in the cytoplasm, which may be extended to the other systems

    HP1 Recruitment in the Absence of Argonaute Proteins in Drosophila

    Get PDF
    Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA interference in the establishment of heterochromatin has been demonstrated in fission yeast. In metazoans, which possess multiple RNA–silencing pathways that are both functionally distinct and spatially restricted, whether RNA silencing contributes directly to heterochromatin formation is not clear. Previous studies in Drosophila melanogaster have suggested the involvement of both the AGO2-dependent endogenous small interfering RNA (endo-siRNA) as well as Piwi-interacting RNA (piRNA) silencing pathways. In order to determine if these Argonaute genes are required for heterochromatin formation, we utilized transcriptional reporters and chromatin immunoprecipitation of the critical factor Heterochromatin Protein 1 (HP1) to monitor the heterochromatic state of piRNA clusters, which generate both endo-siRNAs and the bulk of piRNAs. Surprisingly, we find that mutation of AGO2 or piwi increases silencing at piRNA clusters corresponding to an increase of HP1 association. Furthermore, loss of piRNA production from a single piRNA cluster results in genome-wide redistribution of HP1 and reduction of silencing at a distant heterochromatic site, suggesting indirect effects on HP1 recruitment. Taken together, these results indicate that heterochromatin forms independently of endo-siRNA and piRNA pathways

    Advancing our understanding of functional genome organisation through studies in the fission yeast

    Get PDF
    Significant progress has been made in understanding the functional organisation of the cell nucleus. Still many questions remain to be answered about the relationship between the spatial organisation of the nucleus and the regulation of the genome function. There are many conflicting data in the field making it very difficult to merge published results on mammalian cells into one model on subnuclear chromatin organisation. The fission yeast, Schizosaccharomyces pombe, over the last decades has emerged as a valuable model organism in understanding basic biological mechanisms, especially the cell cycle and chromosome biology. In this review we describe and compare the nuclear organisation in mammalian and fission yeast cells. We believe that fission yeast is a good tool to resolve at least some of the contradictions and unanswered questions concerning functional nuclear architecture, since S. pombe has chromosomes structurally similar to that of human. S. pombe also has the advantage over higher eukaryotes in that the genome can easily be manipulated via homologous recombination making it possible to integrate the tools needed for visualisation of chromosomes using live-cell microscopy. Classical genetic experiments can be used to elucidate what factors are involved in a certain mechanism. The knowledge we have gained during the last few years indicates similarities between the genome organisation in fission yeast and mammalian cells. We therefore propose the use of fission yeast for further advancement of our understanding of functional nuclear organisation

    Correlation of LNCR rasiRNAs Expression with Heterochromatin Formation during Development of the Holocentric Insect Spodoptera frugiperda

    Get PDF
    Repeat-associated small interfering RNAs (rasiRNAs) are derived from various genomic repetitive elements and ensure genomic stability by silencing endogenous transposable elements. Here we describe a novel subset of 46 rasiRNAs named LNCR rasiRNAs due to their homology with one long non-coding RNA (LNCR) of Spodoptera frugiperda. LNCR operates as the intermediate of an unclassified transposable element (TE-LNCR). TE-LNCR is a very invasive transposable element, present in high copy numbers in the S. frugiperda genome. LNCR rasiRNAs are single-stranded RNAs without a prominent nucleotide motif, which are organized in two distinct, strand-specific clusters. The expression of LNCR and LNCR rasiRNAs is developmentally regulated. Formation of heterochromatin in the genomic region where three copies of the TE-LNCR are embedded was followed by chromatin immunoprecipitation (ChIP) and we observed this chromatin undergo dynamic changes during development. In summary, increased LNCR expression in certain developmental stages is followed by the appearance of a variety of LNCR rasiRNAs which appears to correlate with subsequent accumulation of a heterochromatic histone mark and silencing of the genomic region with TE-LNCR. These results support the notion that a repeat-associated small interfering RNA pathway is linked to heterochromatin formation and/or maintenance during development to establish repression of the TE-LNCR transposable element. This study provides insights into the rasiRNA silencing pathway and its role in the formation of fluctuating heterochromatin during the development of one holocentric organism

    Calibration of FRAX ® 3.1 to the Dutch population with data on the epidemiology of hip fractures

    Get PDF
    SummaryThe FRAX tool has been calibrated to the entire Dutch population, using nationwide (hip) fracture incidence rates and mortality statistics from the Netherlands. Data used for the Dutch model are described in this paper.IntroductionRisk communication and decision making about whether or not to treat with anti-osteoporotic drugs with the use of T-scores are often unclear for patients. The recently developed FRAX models use easily obtainable clinical risk factors to estimate an individual's 10-year probability of a major osteoporotic fracture and hip fracture that is useful for risk communication and subsequent decision making in clinical practice. As of July 1, 2010, the tool has been calibrated to the total Dutch population. This paper describes the data used to develop the current Dutch FRAX model and illustrates its features compared to other countries.MethodsAge- and sex-stratified hip fracture incidence rates (LMR database) and mortality rates (Dutch national mortality statistics) for 2004 and 2005 were extracted from Dutch nationwide databases (patients aged 50+ years). For other major fractures, Dutch incidence rates were imputed, using Swedish ratios for hip to osteoporotic fracture (upper arm, wrist, hip, and clinically symptomatic vertebral) probabilities (age- and gender-stratified). The FRAX tool takes into account age, sex, body mass index (BMI), presence of clinical risk factors, and bone mineral density (BMD).ResultsFracture incidence rates increased with increasing age: for hip fracture, incidence rates were lowest among Dutch patients aged 50–54 years (per 10,000 inhabitants: 2.3 for men, 2.1 for women) and highest among the oldest subjects (95–99 years; 169 of 10,000 for men, 267 of 10,000 for women). Ten-year probability of hip or major osteoporotic fracture was increased in patients with a clinical risk factor, lower BMI, female gender, a higher age, and a decreased BMD T-score. Parental hip fracture accounted for the greatest increase in 10-year fracture probability.ConclusionThe Dutch FRAX tool is the first fracture prediction model that has been calibrated to the total Dutch population, using nationwide incidence rates for hip fracture and mortality rates. It is based on the original FRAX methodology, which has been externally validated in several independent cohorts. Despite some limitations, the strengths make the Dutch FRAX tool a good candidate for implementation into clinical practice

    The Intensity of IUGR-Induced Transcriptome Deregulations Is Inversely Correlated with the Onset of Organ Function in a Rat Model

    Get PDF
    A low-protein diet applied during pregnancy in the rat results in intrauterine growth restricted (IUGR) fetuses. In humans, IUGR is associated with increased perinatal morbidity, higher incidence of neuro-developmental defects and increased risk of adult metabolic anomalies, such as diabetes and cardiovascular disease. Development and function of many organs are affected by environmental conditions such as those inducing fetal and early postnatal growth restriction. This phenomenon, termed “fetal programming” has been studied unconnectedly in some organs, but very few studies (if any) have investigated at the same time several organs, on a more comparative basis. However, it is quite probable that IUGR affects differentially most organ systems, with possible persistent changes in gene expression. In this study we address transcriptional alterations induced by IUGR in a multi-organ perspective, by systematic analysis of 20-days rat fetuses. We show that (1) expressional alterations are apparently stronger in organs functioning late in foetal or postnatal life than in organs that are functioning early (2) hierarchical classification of the deregulations put together kidney and placenta in one cluster, liver, lungs and heart in another; (3) the epigenetic machinery is set up especially in the placenta, while its alterations are rather mild in other organs; (4) the genes appear deregulated in chromosome clusters; (5) the altered expression cascades varies from organ to organ, with noticeably a very significant modification of the complement and coagulation cascades in the kidney; (6) we found a significant increase in TF binding site for HNF4 proteins specifically for liver genes that are down-regulated in IUGR, suggesting that this decrease is achieved through the action of HNF transcription factors, that are themselves transcriptionnally induced in the liver by IUGR (x 1.84 fold). Altogether, our study suggests that a combination of tissue-specific mechanisms contributes to bring about tissue-driven modifications of gene cascades. The question of these cascades being activated to adapt the organ to harsh environmental condition, or as an endpoint consequence is still raised

    Continuous Requirement for the Clr4 Complex But Not RNAi for Centromeric Heterochromatin Assembly in Fission Yeast Harboring a Disrupted RITS Complex

    Get PDF
    Formation of centromeric heterochromatin in fission yeast requires the combined action of chromatin modifying enzymes and small RNAs derived from centromeric transcripts. Positive feedback mechanisms that link the RNAi pathway and the Clr4/Suv39h1 histone H3K9 methyltransferase complex (Clr-C) result in requirements for H3K9 methylation for full siRNA production and for siRNA production to achieve full histone methylation. Nonetheless, it has been proposed that the Argonaute protein, Ago1, is the key initial trigger for heterochromatin assembly via its association with Dicer-independent “priRNAs.” The RITS complex physically links Ago1 and the H3-K9me binding protein Chp1. Here we exploit an assay for heterochromatin assembly in which loss of silencing by deletion of RNAi or Clr-C components can be reversed by re-introduction of the deleted gene. We showed previously that a mutant version of the RITS complex (Tas3WG) that biochemically separates Ago1 from Chp1 and Tas3 proteins permits maintenance of heterochromatin, but prevents its formation when Clr4 is removed and re-introduced. Here we show that the block occurs with mutants in Clr-C, but not mutants in the RNAi pathway. Thus, Clr-C components, but not RNAi factors, play a more critical role in assembly when the integrity of RITS is disrupted. Consistent with previous reports, cells lacking Clr-C components completely lack H3K9me2 on centromeric DNA repeats, whereas RNAi pathway mutants accumulate low levels of H3K9me2. Further supporting the existence of RNAi–independent mechanisms for establishment of centromeric heterochromatin, overexpression of clr4+ in clr4Δago1Δ cells results in some de novo H3K9me2 accumulation at centromeres. These findings and our observation that ago1Δ and dcr1Δ mutants display indistinguishable low levels of H3K9me2 (in contrast to a previous report) challenge the model that priRNAs trigger heterochromatin formation. Instead, our results indicate that RNAi cooperates with RNAi–independent factors in the assembly of heterochromatin
    • …
    corecore