5 research outputs found
Recommended from our members
Racial and ethnic differences in plasma biomarker eligibility for a preclinical Alzheimers disease trial.
INTRODUCTION: In trials of amyloid-lowering drugs for Alzheimers disease (AD), differential eligibility may contribute to under-inclusion of racial and ethnic underrepresented groups. We examined plasma amyloid beta 42/40 and positron emission tomography (PET) amyloid eligibility for the ongoing AHEAD Study preclinical AD program (NCT04468659). METHODS: Univariate logistic regression models were used to examine group differences in plasma and PET amyloid screening eligibility. RESULTS: Of 4905 participants screened at time of analysis, 1724 were plasma eligible to continue in screening: 13.3% Hispanic Black, 24.7% Hispanic White, 20.8% non-Hispanic (NH) Asian, 24.7% NH Black, and 38.9% NH White. Plasma eligibility differed across groups in models controlling for covariates (odds ratio from 1.9 to 4.0 compared to the NH White reference group, P < 0.001). Among plasma eligible participants, PET eligibility did not differ by group. DISCUSSION: These results suggest that prevalence of brain amyloid pathology differed, but that eligibility based on plasma was equally effective across racial and ethnic group members. HIGHLIGHTS: Plasma amyloid eligibility is lower in underrepresented racial and ethnic groups. In plasma eligible adults, positron emission tomography eligibility rates are similar across race and ethnicity. Plasma biomarker tests may be similarly effective across racial and ethnic groups
Recommended from our members
Clinical validation of the PrecivityAD2 blood test: A mass spectrometry-based test with algorithm combining %p-tau217 and Aβ42/40 ratio to identify presence of brain amyloid.
BACKGROUND: With the availability of disease-modifying therapies for Alzheimers disease (AD), it is important for clinicians to have tests to aid in AD diagnosis, especially when the presence of amyloid pathology is a criterion for receiving treatment. METHODS: High-throughput, mass spectrometry-based assays were used to measure %p-tau217 and amyloid beta (Aβ)42/40 ratio in blood samples from 583 individuals with suspected AD (53% positron emission tomography [PET] positive by Centiloid > 25). An algorithm (PrecivityAD2 test) was developed using these plasma biomarkers to identify brain amyloidosis by PET. RESULTS: The area under the receiver operating characteristic curve (AUC-ROC) for %p-tau217 (0.94) was statistically significantly higher than that for p-tau217 concentration (0.91). The AUC-ROC for the PrecivityAD2 test output, the Amyloid Probability Score 2, was 0.94, yielding 88% agreement with amyloid PET. Diagnostic performance of the APS2 was similar by ethnicity, sex, age, and apoE4 status. DISCUSSION: The PrecivityAD2 blood test showed strong clinical validity, with excellent agreement with brain amyloidosis by PET
Recommended from our members
Protocol for a seamless phase 2A-phase 2B randomized double-blind placebo-controlled trial to evaluate the safety and efficacy of benfotiamine in patients with early Alzheimer's disease (BenfoTeam).
BACKGROUND: Benfotiamine provides an important novel therapeutic direction in Alzheimer's disease (AD) with possible additive or synergistic effects to amyloid targeting therapeutic approaches. OBJECTIVE: To conduct a seamless phase 2A-2B proof of concept trial investigating tolerability, safety, and efficacy of benfotiamine, a prodrug of thiamine, as a first-in-class small molecule oral treatment for early AD. METHODS: This is the protocol for a randomized, double-blind, placebo-controlled 72-week clinical trial of benfotiamine in 406 participants with early AD. Phase 2A determines the highest safe and well-tolerated dose of benfotiamine to be carried forward to phase 2B. During phase 2A, real-time monitoring of pre-defined safety stopping criteria in the first approximately 150 enrollees will help determine which dose (600 mg or 1200 mg) will be carried forward into phase 2B. The phase 2A primary analysis will test whether the rate of tolerability events (TEs) is unacceptably high in the high-dose arm compared to placebo. The primary safety endpoint in phase 2A is the rate of TEs compared between active and placebo arms, at each dose. The completion of phase 2A will seamlessly transition to phase 2B without pausing or stopping the trial. Phase 2B will assess efficacy and longer-term safety of benfotiamine in a larger group of participants through 72 weeks of treatment, at the selected dose. The co-primary efficacy endpoints in phase 2B are CDR-Sum of Boxes and ADAS-Cog13. Secondary endpoints include safety and tolerability measures; pharmacokinetic measures of thiamine and its esters, erythrocyte transketolase activity as blood markers of efficacy of drug delivery; ADCS-ADL-MCI; and MoCA. CONCLUSION: The BenfoTeam trial utilizes an innovative seamless phase 2A-2B design to achieve proof of concept. It includes an adaptive dose decision rule, thus optimizing exposure to the highest and best-tolerated dose. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT06223360, registered on January 25, 2024. https://classic.clinicaltrials.gov/ct2/show/NCT06223360
Protocol for a seamless phase 2A-phase 2B randomized double-blind placebo-controlled trial to evaluate the safety and efficacy of benfotiamine in patients with early Alzheimers disease (BenfoTeam).
BACKGROUND: Benfotiamine provides an important novel therapeutic direction in Alzheimers disease (AD) with possible additive or synergistic effects to amyloid targeting therapeutic approaches. OBJECTIVE: To conduct a seamless phase 2A-2B proof of concept trial investigating tolerability, safety, and efficacy of benfotiamine, a prodrug of thiamine, as a first-in-class small molecule oral treatment for early AD. METHODS: This is the protocol for a randomized, double-blind, placebo-controlled 72-week clinical trial of benfotiamine in 406 participants with early AD. Phase 2A determines the highest safe and well-tolerated dose of benfotiamine to be carried forward to phase 2B. During phase 2A, real-time monitoring of pre-defined safety stopping criteria in the first approximately 150 enrollees will help determine which dose (600 mg or 1200 mg) will be carried forward into phase 2B. The phase 2A primary analysis will test whether the rate of tolerability events (TEs) is unacceptably high in the high-dose arm compared to placebo. The primary safety endpoint in phase 2A is the rate of TEs compared between active and placebo arms, at each dose. The completion of phase 2A will seamlessly transition to phase 2B without pausing or stopping the trial. Phase 2B will assess efficacy and longer-term safety of benfotiamine in a larger group of participants through 72 weeks of treatment, at the selected dose. The co-primary efficacy endpoints in phase 2B are CDR-Sum of Boxes and ADAS-Cog13. Secondary endpoints include safety and tolerability measures; pharmacokinetic measures of thiamine and its esters, erythrocyte transketolase activity as blood markers of efficacy of drug delivery; ADCS-ADL-MCI; and MoCA. CONCLUSION: The BenfoTeam trial utilizes an innovative seamless phase 2A-2B design to achieve proof of concept. It includes an adaptive dose decision rule, thus optimizing exposure to the highest and best-tolerated dose. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT06223360, registered on January 25, 2024. https://classic.clinicaltrials.gov/ct2/show/NCT06223360
Plasma Aβ42/40 and cognitive variability are associated with cognitive function in Black Americans: Findings from the AA‐FAIM cohort
Abstract Introduction It is critical to develop more inclusive Alzheimer's disease (AD) research protocols to ensure that historically excluded groups are included in preclinical research and have access to timely diagnosis and treatment. If validated in racialized groups, plasma AD biomarkers and measures of subtle cognitive dysfunction could provide avenues to expand diversity in preclinical AD research. We sought to evaluate the utility of two easily obtained, low‐burden disease markers, plasma amyloid beta (Aβ)42/40, and intra‐individual cognitive variability (IICV), to predict concurrent and longitudinal cognitive performance in a sample of Black adults. Methods Two hundred fifty‐seven Black participants enrolled in the African Americans Fighting Alzheimer's in Midlife (AA‐FAIM) study underwent at least one cognitive assessment visit; a subset of n = 235 had plasma samples. Baseline IICV was calculated as the standard deviation across participants’ z scores on five cognitive measures: Rey Auditory Verbal Learning Test Delayed Recall, Trail Making Test Parts A and B (Trails A and B), and Boston Naming Test. Using mixed effects regression models, we compared concurrent and longitudinal models to baseline plasma Aβ42/40 or IICV by age interactions. PrecivityAD assays quantified baseline plasma Aβ42/40. Results IICV was associated with concurrent/baseline performance on several outcomes but did not modify associations between age and cognitive decline. In contrast, plasma Aβ42/40 was unrelated to baseline cognitive performance, but a pattern emerged in interactions with age in longitudinal models of Trails A and B and Rey Auditory Verbal Learning Test total learning trials. Although not significant after correcting for multiple comparisons, low Aβ42/40 was associated with faster cognitive declines over time. Discussion Our results are promising as they extend existing findings to an Black American sample using low‐cost, low‐burden methods that can be implemented outside of a research center, thus supporting efforts for inclusive AD biomarker research