132 research outputs found

    Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis

    Get PDF
    Human induced pluripotent stem cell derived cardiomyocytes are a powerful model for cardiogenesis and disease in vitro. Here the authors comprehensively map cardiac differentiation using multiple modalities, including single-cell RNA seq and CyTOF, in cells with a gain  or loss of function in key cardiac transcription factors

    DNMT3A Haploinsufficiency Transforms FLT3

    No full text
    Cytogenetically normal acute myeloid leukemia (CN-AML) represents nearly 50% of human AML. Co-occurring mutations in the de novo DNA methyltransferase DNMT3A and the FMS related tyrosine kinase 3 FLT3 are common in CN-AML and confer a poorer prognosis. We demonstrate that mice with Flt3-internal-tandem duplication (Flt3(ITD)) and inducible deletion of Dnmt3a spontaneously develop a rapidly-lethal, completely-penetrant, and transplantable AML of normal karyotype. AML cells retain a single Dnmt3a floxed allele, revealing the oncogenic potential of Dnmt3a haploinsufficiency. FLT3-ITD/DNMT3A-mutant primary human and murine AML exhibit a similar pattern of global DNA methylation associated with changes in the expression of nearby genes. In the murine model, rescuing DNMT3A expression was accompanied by DNA re-methylation and loss of clonogenic potential, suggesting that Dnmt3a-mutant oncogenic effects are reversible. Dissection of the cellular architecture of the AML model using single-cell assays identified clonogenic subpopulations that express genes sensitive to the methylation of nearby genomic loci, and responsive to Dnmt3a levels. Thus, Dnmt3a haploinsufficiency transforms Flt3(ITD) myeloproliferative disease by modulating methylation-sensitive gene expression within a clonogenic AML subpopulation

    DNMT3A Haploinsufficiency Transforms FLT3ITD Myeloproliferative Disease into a Rapid, Spontaneous, and Fully Penetrant Acute Myeloid Leukemia.

    No full text
    UnlabelledCytogenetically normal acute myeloid leukemia (CN-AML) represents nearly 50% of human AML. Co-occurring mutations in the de novo DNA methyltransferase DNMT3A and the FMS related tyrosine kinase 3 (FLT3) are common in CN-AML and confer a poorer prognosis. We demonstrate that mice with Flt3-internal tandem duplication (Flt3(ITD)) and inducible deletion of Dnmt3a spontaneously develop a rapidly lethal, completely penetrant, and transplantable AML of normal karyotype. AML cells retain a single Dnmt3a floxed allele, revealing the oncogenic potential of Dnmt3a haploinsufficiency. FLT3(ITD)/DNMT3A-mutant primary human and murine AML exhibit a similar pattern of global DNA methylation associated with changes in the expression of nearby genes. In the murine model, rescuing Dnmt3a expression was accompanied by DNA remethylation and loss of clonogenic potential, suggesting that Dnmt3a-mutant oncogenic effects are reversible. Dissection of the cellular architecture of the AML model using single-cell assays, including single-cell RNA sequencing, identified clonogenic subpopulations that express genes sensitive to the methylation of nearby genomic loci and responsive to DNMT3A levels. Thus, Dnmt3a haploinsufficiency transforms Flt3(ITD) myeloproliferative disease by modulating methylation-sensitive gene expression within a clonogenic AML subpopulation.SignificanceDNMT3A haploinsufficiency results in reversible epigenetic alterations that transform FLT3(ITD)-mutant myeloproliferative neoplasm into AML. Cancer Discov; 6(5); 501-15. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 461

    PHIP as a therapeutic target for driver-negative subtypes of melanoma, breast, and lung cancer

    No full text
    The identification and targeting of key molecular drivers of melanoma and breast and lung cancer have substantially improved their therapy. However, subtypes of each of these three common, lethal solid tumors lack identified molecular drivers, and are thus not amenable to targeted therapies. Here we show that pleckstrin homology domain-interacting protein (PHIP) promotes the progression of these "driver-negative" tumors. Suppression of PHIP expression significantly inhibited both tumor cell proliferation and invasion, coordinately suppressing phosphorylated AKT, cyclin D1, and talin1 expression in all three tumor types. Furthermore, PHIP's targetable bromodomain is functional, as it specifically binds the histone modification H4K91ac. Analysis of TCGA profiling efforts revealed PHIP overexpression in triple-negative and basal-like breast cancer, as well as in the bronchioid subtype of nonsmall cell lung cancer. These results identify a role for PHIP in the progression of melanoma and breast and lung cancer subtypes lacking identified targeted therapies. The use of selective, anti-PHIP bromodomain inhibitors may thus yield a broad-based, molecularly targeted therapy against currently nontargetable tumors

    DNMT3A haploinsufficiency transforms FLT3ITD myeloproliferative disease into a rapid, spontaneous, and fully penetrant acute myeloid leukemia

    No full text
    Cytogenetically normal acute myeloid leukemia (CN-AML) represents nearly 50% of human AML. Co-occurring mutations in the de novo DNA methyltransferase DNMT3A and the FMS related tyrosine kinase 3 (FLT3) are common in CN-AML and confer a poorer prognosis. We demonstrate that mice with Flt3-internal tandem duplication (Flt3ITD) and inducible deletion of Dnmt3a spontaneously develop a rapidly lethal, completely penetrant, and transplantable AML of normal karyotype. AML cells retain a single Dnmt3afloxed allele, revealing the oncogenic potential of Dnmt3a haploinsufficiency.FLT3ITD/DNMT3A-mutant primary human and murine AML exhibit a similar pattern of global DNA methylation associated with changes in the expression of nearby genes. In the murine model, rescuing Dnmt3a expression was accompanied by DNA remethylation and loss of clonogenic potential, suggesting that Dnmt3a-mutant oncogenic effects are reversible. Dissection of the cellular architecture of the AML model using single-cell assays, including single-cell RNA sequencing, identified clonogenic subpopulations that express genes sensitive to the methylation of nearby genomic loci and responsive to DNMT3A levels. Thus, Dnmt3a haploinsufficiency transforms Flt3ITD myeloproliferative disease by modulating methylation-sensitive gene expression within a clonogenic AML subpopulation
    corecore