1 research outputs found

    End-On and Side-On Ļ€ā€‘Acid Ligand Adducts of Gold(I): Carbonyl, Cyanide, Isocyanide, and Cyclooctyne Gold(I) Complexes Supported by Nā€‘Heterocyclic Carbenes and Phosphines

    No full text
    N-Heterocyclic carbene ligand SIDipp (SIDipp = 1,3-bisĀ­(2,6-diisopropylphenyl)Ā­imidazolin-2-ylidene) and trimesitylphosphine ligand have been used in the synthesis of goldĀ­(I) cyanide, <i>t</i>-butylisocyanide, and cyclooctyne complexes (SIDipp)Ā­AuĀ­(CN) (<b>3</b>), (Mes<sub>3</sub>P)Ā­AuĀ­(CN) (<b>4</b>), [(Mes<sub>3</sub>P)<sub>2</sub>Au]Ā­[AuĀ­(CN)<sub>2</sub>] (<b>5</b>), [(SIDipp)Ā­AuĀ­(CN<sup><i>t</i></sup>Bu)]Ā­[SbF<sub>6</sub>] (<b>[6]Ā­[SbF</b><sub><b>6</b></sub><b>]</b>), [(SIDipp)Ā­AuĀ­(cyclooctyne)]Ā­[SbF<sub>6</sub>] (<b>[8]Ā­[SbF</b><sub><b>6</b></sub><b>]</b>), and [(Mes<sub>3</sub>P)Ā­AuĀ­(cyclooctyne)]Ā­[SbF<sub>6</sub>] (<b>[9]Ā­[SbF</b><sub><b>6</b></sub><b>]</b>). A detailed computational study has been carried out on these and the related goldĀ­(I) carbonyl adducts [(SIDipp)Ā­AuĀ­(CO)]Ā­[SbF<sub>6</sub>] (<b>[1]Ā­[SbF</b><sub><b>6</b></sub><b>]</b>), [(Mes<sub>3</sub>P)Ā­AuĀ­(CO)]Ā­[SbF<sub>6</sub>] (<b>[2]Ā­[SbF</b><sub><b>6</b></sub><b>]</b>), and [(Mes<sub>3</sub>P)Ā­AuĀ­(CN<sup><i>t</i></sup>Bu)]<sup>+</sup> (<b>[7]</b><sup><b>+</b></sup>). X-ray crystal structures of <b>3</b>, <b>5</b>, <b>[6]Ā­[SbF</b><sub><b>6</b></sub><b>]</b>, <b>[8]Ā­[SbF</b><sub><b>6</b></sub><b>]</b>, and <b>[9]Ā­[SbF</b><sub><b>6</b></sub><b>]</b> revealed that they feature linear gold sites. Experimental and computational data show that the changes in Ļ€-acid ligand on (SIDipp)Ā­Au<sup>+</sup> from CO, CN<sup>ā€“</sup>, CN<sup><i>t</i></sup>Bu, cyclooctyne as in <b>[1]</b><sup>+</sup>, <b>3</b>, <b>[6]</b><sup>+</sup>, and <b>[8]</b><sup>+</sup> did not lead to large changes in the Auā€“C<sub>carbene</sub> bond distances. A similar phenomenon was also observed in Auā€“P distance in complexes <b>[2]</b><sup>+</sup>, <b>4</b>, <b>[7]</b><sup>+</sup>, and <b>[9]</b><sup>+</sup> bearing trimesitylphosphine. Computational data show that the Auā€“L bonds of ā€œnakedā€ [Auā€“L]<sup>+</sup> or SIDipp and Mes<sub>3</sub>P supported [Auā€“L]<sup>+</sup> (L = CO, CN<sup>ā€“</sup>, CN<sup><i>t</i></sup>Bu to cyclooctyne) have higher electrostatic character than covalent character. The Auā†L Ļƒ-donation and Auā†’L Ļ€-back-donation contribute to the orbital term with the former being the dominant component, but the latter is not negligible. In the Auā€“CO adducts <b>[1]</b><sup>+</sup>and <b>[2]</b><sup>+</sup>, the cationic gold center causes the polarization of the Cā€“O Ļƒ and Ļ€ orbitals toward the carbon end making the coefficients at the two atoms more equal which is mainly responsible for the large blue shift in the CO stretching frequency. The SIDipp and Mes<sub>3</sub>P supported goldĀ­(I) complexes of cyanide and isocyanide also exhibit a significant blue shift in Ļ…Ģ…<sub>CN</sub> compared to that of the free ligands. Calculated results for AuĀ­(CO)Cl and AuĀ­(CF<sub>3</sub>)Ā­CO suggest that the experimentally observed blue shift in Ī½Ģ…<sub>CO</sub> of these compounds may at least partly be caused by intermolecular forces
    corecore