546 research outputs found
Recovery of Mn as MnO2from spent batteries leaching solutions
The recycling of spent batteries and recovery of metals from them is of great scientific and economic interest, on account of recycling requirement of these wastes and recovery of valuable materials (De Michellis et al., 2007). Usage of recycled materials is diminishing the energy consumption and pollution. It is important that the recycling process to be environmentally friendly, practical and cost-effective. Tests for the process of manganese removal from spent battery leaching solutions, with ammonium peroxodisulfate, prior to recovery of zinc by electrolysis are presented. The experiments were carried out according to a 2 3 full factorial design as a function of ammonium peroxodisulfate concentration, temperature and pH. Because the excessive manganese in the spent batteries leach solutions can cause problems in the process of Zn recovery by electrolysis the main focus of this study is the manganese removal without altering the concentration of zinc in solutions. Data from XRF and AAS during the reaction at different time are presented. Manganese is obtained with high extraction degree as MnO2, which is economic and commercial important with applications in battery industry, water treatment plants, steel industry and chemicals (Pagnanelli et al., 2007). The analysis of variance (ANOVA) was carried out on the extraction yields of Zn after 30min, 1h, 2h and 3h of reaction. The preliminary results denoted that by chemical oxidation with ammonium peroxodisulfate is a suitable method for manganese removal as MnO2 prior zinc recovery by electrolysis, from spent batteries solutions and it could be used in a plant for recycling batteries
A feasibility study for a circular approach in oil refining: Metals recovery from hydrodesulphurization catalysts
The paper deals with a profitability analysis developed for a plant that recycles spent hydrodesulphurization (HDS) catalysts. Such catalysts contain molybdenum (Mo), nickel (Ni), and vanadium (V), supported by an alumina (Al2O3) carrier. The recycling process is based on a double thermal pre-treatment stage, followed by a series of hydrometallurgical steps that allow recovering Mo and V and a Ni concentrate that need further refining for separation and recovery of the metals. The economic analysis is based on the discounted cash flow method, and the baseline case analyses show that the net present value (NPV) is 14,877 thousand EUR. The selling price of vanadium pentoxide strongly influences the results. Alternative scenarios are also studied to strengthen the results obtained, considering the sensitivity, scenario and risk analyses. Profitability is confirmed in 87% of the considered scenarios, and in about 81.5%, the NPV of the baseline scenario is achieved. Circular economy models can be realized if products are recovered and if there are technologies that can recover metals. This study confirms that an example of a circular economy is met from the proposed viability analysis, and the economic benefits can be significant
Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol.
Collaboration between Leicester School of Pharmacy - De Montfort Universit, Department of Life, Health and Environmental Sciences - University of L'Aquila, and Department of Biochemistry and Biotechnology - University of Thessaly
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Saffron fromthe province of L'Aquila, in the Abruzzo region of Italy, is highly prized and has been awarded a formal recognition by the European Union with EU Protected Designation of Origin (PDO) status. Despite this, the saffron regions are abandoned by the younger generations because the traditional cultivation of saffron (Crocus sativus L.) is labour intensive and yields only one crop of valuable saffron stamens per year. Petals of
the saffron Crocus have had additional uses in traditional medicine and may add value to the crops for local farmers. This is especially important because the plant only flowers between October andNovember, and farmers will need to make the best use of the flowers harvested in this period. Recently, the petals of C. sativus L., which are considered a wastematerial in the production of saffron spice,were identified as a potential source of natural antioxidants. The antioxidants crocin and kaempferol were purified by flash column chromatography, and identified by thin layer chromatography (TLC), HPLC–DAD, infrared (IR), and nuclear magnetic resonance (1H & 13C NMR) spectroscopy. The antioxidant activity was determined with the ABTS and DPPH tests. The antioxidant activities are
mainly attributed to carotenoid and flavonoid compounds, notably glycosides of crocin and kaempferol. We found in dried petals 0.6% (w/w) and 12.6 (w/w) of crocin and kaempferol, respectively. Petals of C. sativus L. have commercial potential as a source for kaempferol and crocetin glycosides, natural compounds with antioxidant activity that are considered to be the active ingredients in saffron-based herbal medicine
- …