1,868 research outputs found

    Comment on 'Exact solution of resonant modes in a rectangular resonator'

    Get PDF
    We comment on the recent Letter by J. Wu and A. Liu [Opt. Lett. 31, 1720 (2006)] in which an exact scalar solution to the resonant modes and the resonant frequencies in a two-dimensional rectangular microcavity were presented. The analysis is incorrect because (a) the field solutions were imposed to satisfy simultaneously both Dirichlet and Neumann boundary conditions at the four sides of the rectangle, leading to an overdetermined problem, and (b) the modes in the cavity were expanded using an incorrect series ansatz, leading to an expression for the mode fields that does not satisfy the Helmholtz equation

    Elliptical beams

    Get PDF
    A very general beam solution of the paraxial wave equation in elliptic cylindrical coordinates is presented. We call such a field an elliptic beam (EB). The complex amplitude of the EB is described by either the generalized Ince functions or the Whittaker-Hill functions and is characterized by four parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integrability are studied in detail. Special cases of the EB are the standard, elegant, and generalized Ince-Gauss beams, Mathieu-Gauss beams, among others

    Normalization of the Mathieu-Gauss optical beams

    Get PDF
    A series scheme is discussed for the determination of the normalization constants of the even and odd Mathieu-Gauss (MG) optical beams. We apply a suitable expansion in terms of Bessel-Gauss (BG) beams and also answer the question of how many BG beams should be used to synthesize a MG beam within a tolerance. The structure of the normalization factors ensures that MG beams will always be normalized independently of the particular normalization adopted for the Mathieu functions. In this scheme, the normalization constants are expressed as rapidly convergent series that can be calculated to an arbitrary precision

    Airy-Gauss beams and their transformation by paraxial optical systems

    Get PDF
    We introduce the generalized Airy-Gauss (AiG) beams and analyze their propagation through optical systems described by ABCD matrices with complex elements in general. The transverse mathematical structure of the AiG beams is form-invariant under paraxial transformations. The conditions for square integrability of the beams are studied in detail. The model of the AiG beam describes in a more realistic way the propagation of the Airy wave packets because AiG beams carry finite power, retain the nondiffracting propagation properties within a finite propagation distance, and can be realized experimentally to a very good approximation

    Higher-order moments and overlaps of Cartesian beams

    Get PDF
    We introduce a closed-form expression for the overlap between two different Cartesian beams. In the course of obtaining this expression, we establish a linear relation between the overlap of circular beams with azimuthal symmetry and the overlap of Cartesian beams such that the knowledge of the former allows the latter to be calculated very easily. Our formalism can be easily applied to calculate relevant beam parameters such as the normalization constants, the M2 factors, the kurtosis parameters, the expansion coefficients of Cartesian beams, and therefore of all their relevant special cases, including the standard, elegant, and generalized Hermite–Gaussian beams, cosh-Gaussian beams, Lorentz beams, and Airy beams, among others

    Large-eddy simulations of high Reynolds number jets with a suitable subgrid-scale model for solver dependency study

    Get PDF
    Large-eddy simulations are performed of a turbulent round jet at Ma = 0.5 and 0.9. The solver dependency is explored on computationally affordable grids of 5 and 20 million grid points, by taking advantage of the consistency of the subgrid-scale sigma-model. Three different solvers are tested. With all three, the computed mean and second-order fluctuating quantities of the turbulent near field compare favorably with measurements, for both Mach numbers and both grids, showing the strength of the sigma-model in adapting to different flow conditions and grid refinements

    Error Cascades in Observational Learning: An Experiment on the Chinos Game

    Get PDF
    The paper reports an experimental study based on a variant of the popular Chinos game, which is used as a simple but paradigmatic instance of observational learning. There are three players, arranged in sequence, each of whom wins a fixed price if she manages to guess the total number of coins lying in everybody’s hands. Our evidence shows that, despite the remarkable frequency of equilibrium outcomes, deviations from optimal play are also significant. And when such deviations occur, we find that, for any given player position, the probability of a mistake is increasing in the probability of a mistake of her predecessors. This is what we call an error cascade, which we rationalize by way of a simple model of “noisy equilibrium”.positional learning, error cascades

    Propagation of generalized vector Helmholtz-Gauss beams through paraxial optical systems

    Get PDF
    We introduce the generalized vector Helmholtz-Gauss (gVHzG) beams that constitute a general family of localized beam solutions of the Maxwell equations in the paraxial domain. The propagation of the electromagnetic components through axisymmetric ABCD optical systems is expressed elegantly in a coordinate-free and closed-form expression that is fully characterized by the transformation of two independent complex beam parameters. The transverse mathematical structure of the gVHzG beams is form-invariant under paraxial transformations. Any paraxial beam with the same waist size and transverse spatial frequency can be expressed as a superposition of gVHzG beams with the appropriate weight factors. This formalism can be straightforwardly applied to propagate vector Bessel-Gauss, Mathieu-Gauss, and Parabolic-Gauss beams, among others

    Generalized Ince Gaussian beams

    Get PDF
    In this work we present a detailed analysis of the tree families of generalized Gaussian beams, which are the generalized Hermite, Laguerre, and Ince Gaussian beams. The generalized Gaussian beams are not the solution of a Hermitian operator at an arbitrary z plane. We derived the adjoint operator and the adjoint eigenfunctions. Each family of generalized Gaussian beams forms a complete biorthonormal set with their adjoint eigenfunctions, therefore, any paraxial field can be described as a superposition of a generalized family with the appropriate weighting and phase factors. Each family of generalized Gaussian beams includes the standard and elegant corresponding families as particular cases when the parameters of the generalized families are chosen properly. The generalized Hermite Gaussian and Laguerre Gaussian beams correspond to limiting cases of the generalized Ince Gaussian beams when the ellipticity parameter of the latter tends to infinity or to zero, respectively. The expansion formulas among the three generalized families and their Fourier transforms are also presented
    corecore