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ABSTRACT

In this work we present a detailed analysis of the tree families of generalized Gaussian beams, which are the
generalized Hermite, Laguerre, and Ince Gaussian beams. The generalized Gaussian beams are not the solution
of a Hermitian operator at an arbitrary plane. We derived the adjoint operator and the adjoint eigenfunctions.
Each family of generalized Gaussian beams forms a complete biorthonormal set with their adjoint eigenfunctions,
therefore, any paraxial field can be described as a superposition of a generalized family with the appropriate
weighting and phase factors. Each family of generalized Gaussian beams includes the standard and elegant
corresponding families as particular cases when the parameters of the generalized families are chosen properly.
The generalized Hermite Gaussian and Laguerre Gaussian beams correspond to limiting cases of the generalized
Ince Gaussian beams when the ellipticity parameter of the latter tends to infinity or to zero, respectively. The
expansion formulas among the three generalized families and their Fourier transforms are also presented.
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1. INTRODUCTION

The standard and elegant Hermite—Gaussian, Laguerre—Gaussian, and Ince—Gaussian beams constitute the
three orthogonal and biorthogonal, respectively, complete families of paraxial solutions for the scalar Helmholtz
equation. The elegant solutions di er from the standard solutions in that the former contain polynomials with
a complex argument but coinciding with that of the Gaussian function, whereas in the latter the argument is
real.1—5

As other solutions that satisfy the paraxial wave equation, Pratesi and Ronchi in Ref. 6 and, Wunsche in
Ref. 7 presented independently the generalized Hermite-Gaussian beams (gHGBs) and generalized Laguerre-
Gaussian beams (gLGBs) in which the argument of the polynomials is complex in general. The standard
Gaussian beams and elegant Gaussian beams are paticular cases of these generalized solutions.

In this work we present a detailed analysis of the tree complete families of exact and biorthogonal generalized
solutions to the paraxial wave equation including the recently derived generalized Ince Gaussian beams (gIGBs).
Previous works about the gHGBs and gLGBs do not stress that these families of solutions of the paraxial wave
equation while are complete are not orthogonal but biorthogonal.

We show that, at an arbitrary plane, the generalized beams are not solutions of a Hermitian operator and
therefore are not orthogonal functions. We derived the adjoint operator and the adjoint eigenfunctions for the
tree generalized families. Each family of generalized Gaussian beams (gGBs) form a complete biorthogonal set
with their adjoint eigenfunctions, therefore, any paraxial field can be described as a superposition of gGBs with
the appropriate weighting and phase factors. We derive the normalization coe cients to make each family not
only biorthogonal but also biorthonormal. Each family of gGBs includes the standard and elegant families as
particular cases when the parameters of the generalized families are chosen adequately.

The generalized Hermite and Laguerre Gaussian beams correspond to limiting cases of the generalized Ince
Gaussian beams when the ellipticity parameter of the last ones tends to infinity or to zero, respectively. The
expansion formulas among the three generalized families and their Fourier transforms are also derived.
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2. GENERALIZED GAUSSIAN BEAMS

In this section we introduce the gGBs that are exact solutions to the paraxial wave equation and their adjoint
gGBs. Previous works6, 7 had not studied the adjoint generalized solutions, however, as we will show, by
analyzing the relations among the gGBs and their adjoint beams we will be able to find a physical interpretation
of the parameters which describe the gGBs.

To derive the gGBs and their adjoint beams we proceed as follows: For a paraxial field traveling in the
direction we write, = ( ) exp( ), where ( ) are the transverse coordinates and is a slowly varying
complex envelope that satisfies the paraxial wave equationµ

2 + 2

¶
( ) = 0 (1)

where 2 is the transverse Laplacian, and is the wave number. The lowest-order solution of the paraxial
wave equation is the fundamental Gaussian beam,

GB( ) =
1

( )
exp

µ
2

( )

¶
(2)

where is the transverse radius, = ( ) 1 + is a complex parameter, = 2 is the Rayleigh
range and is a complex parameter which real part Re ( ) = 2

0 where 0 is the beam width at the waist plane.

To derive the gGBs we propose, based on the known generalized solution,6, 7 the following ansatz

( ) = ( ) ( ) ( ) (3)

where

( ) =

µ
( )

( )

¶ 2

(4)

is a non-negative integer separation constant, ( ) is a function to be determined, and ( ) is a complex
scaled transverse coordinate system related to the transverse Cartesian system by

( ) = ( )( ) (5)

( )
+ 1

¸1 2

(6)

where is a complex parameter, = ( ) 1 + and = 2. The physical meaning of these
quantities will be clear later. It is important to notice that the transverse coordinate system ( ) is just a
complex scaled version of each transverse plane, but the complex scale constant change as a function of .

The structure of Eq. (3) is particularly convenient because it has factorized out the whole functional -
dependence of the gGBs. As a consequence, we can apply the part of the paraxial wave equation to
Eq. (3) and get an eigenvalue equation for that only depends on the transverse complex scale coordinates
( ) while the dependence is now implicit in the parameters of the equation and the scaling. Note that
the transverse complex scale coordinates depends implicitly on therefore is it necessary to take in account its
variation respect to the transverse coordinate while appliying the operator to Eq.(3). In this way, we get
the following eigenvalue equation

L = 2 (7)

L = 2 +
4

+

4

( + )
2

2 + 2

µ
+

¶
r · (8)

where = ( ) is the Del operator, and r = ( ) is the position vector both respect to the
complex scaled transverse coordinates. If we consider this equation for a fixed arbitrary transverse plane then
, , , , are just complex parameters of the eigenvalue equation.
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Our next task is to find the adjoint operator L† of L, the eigenfunctions of the operator are the adjoint
gGBs. To do this, we first define an inner product between two functions of the complex scaled transverse
coordinates as follows

h i =
Z

(9)

The definition of the adjoint operator L† of L, is given by
h L i = L† ®

(10)

Using this definition, we integrate by parts the left hand side of Eq. (10) to get it in the form of the right hand
side and extract the adjoint operator L†. In the integration by parts it is necessary that the product vanish
at infinity in order to drop the surface terms. We will use this boundary condition on to constraint the
values of the parameter and below. Then we get

L† = 2 +
4

+

4

( + )2
2 + 2

µ
+

¶
r · (11)

where = ( ) and r = ( ), this is

( ) = ( )( ) (12)

( )

µ
+

¶
1
¸1 2

(13)

Finally the adjoint solutions b are eigenfuntions of the adjoint operator L† of L,
L†b = 2 b (14)

Now we can remark the most important result of this analysis, namely, that the gGBs solutions and its
adjoint counterpart b are simply related by b (15)

To see this, note that L and L† are related by L L† when while the complex scale transverse
coordinates ( ) and their complex conjugate ( ) are related in the same way. Due to this relation,
the physical interpretation of the parameter is that Re ( ) = b20, where b0 is the beam width of the adjoint
solutions at the waist plane. Summarizing, the generalized Gaussian beam are characterized by two complex
parameter and , while Re ( ) is related to the beam width of the generalized Gaussian beam at the waist
plane, Re ( ) is related to the beam width of the adjoint generalized Gaussian beam at the waist plane. Since we

want the gGBs to vanish at infinity we restrict Re ( ) 0. And from the condition that
Db E

must be finite

we obtain the constraint Re (1 ) + Re (1 ) 0. With these constraints the gGBs as eigenfuntions of L form
a complete basis of function in which we can expand any square integrable function in an arbitrary transverse
plane, we chose the plane = 0 without lose of generality. While the eigenfunctions of L are complete they

are not orthogonal, however they are biorthogonal respect to the adjoint eigenfunctions of L†. This isDb
a b

E
= 0 if a 6= b (16)

where a and b represents all possible mode indices of a given complete family of gGBs. Furthermore, using the
proper normalization constants for the gGBs and their adjoint beams, as we will use in the following sections,

we can make the relation biorthonormal, this is
Db

a b

E
= ab Then, given an arbitrary transverse profile

( ) at = 0 we can expand its paraxial propagation in terms of gGBs in the following form

( ) =
X
a

a a( ) (17)

where the sum is over all possible mode indices a, and a is given by

a =
Db

a ( )
E

(18)
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3. FAMILIES OF GENERALIZED GAUSSIAN BEAMS

In the last section we analyzed the fundamental properties of the gGBs, in this section we present the three
unique families of gGBs, namely, the generalized Hermite, Laguerre and Ince Gaussian beams. Evaluating the
eigenfunction Eq. (7) with the ansatz Eq. (3) we get the following di erential equation for the function ( )

¡
2 2r · ¢

= 2 (19)

This eigenvalue equation has separable solutions in three coordinate systems11: Cartesian, polar and elliptical.
Introducing these solutions in Eq. (3) we get for each coordinate system a complete family of biorthogonal
generalized Gaussian beam solutions to the paraxial wave equations.

3.1. Generalized Ince Gaussian Beams
To derive the gIGBs we start by solving Eq. (19) in a complex elliptical coordinate system r = ( ). These
coordinates are defined as

= 1 2 cosh cos (20a)

= 1 2 sinh sin (20b)

where the radial and the angular complex elliptic coordinates, and = (0 ) is the ellipticity parameter.
Solving Eq. (19) by separation of variables = ( ) ( ) leads to the separated equations

d2

d 2 sinh 2
d

d
= ( cosh 2 ) (21)

d2

d 2
+ sin 2

d

d
= ( cos 2 ) (22)

where is a separation constants, and will be referred to as the ellipticity parameter.

Equation (22) is known in the theory of periodic di erential equations under the name of Ince equation, it
was studied originally by the mathematician E. G. Ince in 1923.8 Ince equation is a special case of the most
general Hill equation and it has been investigated in detail by F. M. Arscott,9, 10 and it is his notation for the
solutions that we use. Notice that Eq. (21) may be derived from Eq. (22) by writing for and vice versa.
This reciprocal relation is important because radial solutions ( ) may be obtained from angular solutions
( ) by making the argument imaginary. There are three parameters in Eq. (22), it is convenient to regard

as fundamental and as disposable parameters. The technique to solve analytically Eq. (22) is very similar
to that for the better known Mathieu equation.13 Qualitatively, Eq. (22) di ers from Mathieu equation in that
for certain values of and there exist finite solutions, i.e. solutions expressible as finite trigonometric series
or as polynomials in sin or cos

Solutions of Eq. (22) are known as the even and odd Ince polynomials of order and degree they are
denoted usually as C ( ) and S ( ) respectively, where 0 for even functions, 1 for odd
functions, the indices ( ) have always the same parity, i.e. ( 1) = 1 and is the ellipticity parameter
defined earlier.9 In a search for two-dimensional solutions, only products of functions of the same parity in
and satisfy continuity in the whole plane.

Therefore, substituting this solutions of Eq. (19) into Eq. (3), the generalized Ince Gaussian beams and
their adjoint beams are given by

gIG (r ) = (0)
( )

( )

¸ 2½ C ( ) ( )
S ( ) ( )

¾
GB(r ) (23)

gcIG (r ) = (0)
( )

( )

¸ 2½ C ( ) ( )
S ( ) ( )

¾
GB(r ) (24)
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where the subscript indices and refers to even and odd modes respectively and C and S are normalization
constants that are given below. And the transverse Cartesian coordinates and the complex elliptic coordinates
are related by

= ( ) cosh cos = ( ) sinh sin (25)

( ) = 1 2 ( ) (26)

it is important to note that since is generally complex, it is only real just in the case where = = Re( ),

then and are complex numbers. The biorthogonality relation at any plane is given by
D
gcIG gIG

0
0 0

E
=

0 0 0 where = { } Figure (1) shows the transverse amplitudes and phases of several odd gLGBs,
odd gIGBs, gHGBs at plane = gIGB tend to gLGBs or gHGBs when 0 or , respectively. The
indexes of the patterns are included within the figure.

The normalization constans are given by

C ( 2Z ) =

r
2 ( 2)! +

0

C (0 )C ( 2 )
(27)

C ( 2Z + 1 ) = +1

r
2 [( + 1) 2]! 0

C (0 )C0 ( 2 )
(28)

S ¡
2Z+

¢
=

r
2 [( + 2) 2]! +

1

S0 (0 ) S0 ( 2 )
(29)

S ( 2Z + 1 ) = 1

r
2 [( + 1) 2]! 0

S ( 2 ) S0 (0 )
(30)

where Z are the nonegative integers, Z+ the positive integer, C0 ( ) = C ( ) , S0 ( ) = S ( )
+
0 and +

0 are the first Fourier coe cient of the C (·) or the S (·) Ince polynomials,3, 11 the superscripts
+ and refer to the parity of . We have used the following normalization for the Ince polynomials

2X
=0

(1 + 0)

µ
+ 2

2

¶
!

µ
2

2

¶
!
¡

+
¢2
= 1 (31a)

( 1) 2X
=0

µ
+ 2 + 1

2

¶
!

µ
(2 + 1)

2

¶
!
¡ ¢2

= 1 (31b)

2X
=1

µ
+ 2

2

¶
!

µ
2

2

¶
!
¡

+
¢2
= 1 (31c)

( 1) 2X
=0

µ
+ 2 + 1

2

¶
!

µ
(2 + 1)

2

¶
!
¡ ¢2

= 1 (31d)

The Fourier transform defined as

F { ( )} = e ( ) =
1

2

Z
( ) exp ( ) (32)

of the gIGBs in any transverse plane is given by

gfIG ( ) = (0)
2

³ ´1 2
¸ (

C ( e ) (e )

S ( e ) (e )

)
exp

µ
( )

4
2

¶
(33)

where = 2 [ ( + )]1 2 cosh cose and = 2 [ ( + )]1 2 cosh cose and =
¡
2 + 2

¢1 2
The

Fourier transform of the adjoint beams are obtained by interchanging and following the relation between
the generalized beams and their adjoints given by Eq. (15).
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Figure 1. Transverse amplitudes and phases at = of odd gLGBs, odd gIGBs, gHGBs with = (0 0025)2 m2 and
= (1 + ) m2 The gIGBs correspond to = 2 Odd gIGB tend to odd gLGBs or gHGBs when 0 or ,

respectively. The transverse extent of each window is 1 cm.

3.2. Generalized Hermite Gaussian Beams
In the following two subsections we include the explicit expressions for the gHGBs and the gLGBs.6, 7 We also
introduce for the first time to our knowledge their adjoint solutions and the proper normalization constants to
make each family biorthonormal. The gHGBs and their adjoint functions are

gHG (r ) = (0)

µ ¶( + ) 2

[ ( ) ] [ ( ) ]GB (r ) (34)

gdHG (r ) = (0)

µ ¶( + ) 2

[ ( ) ] [ ( ) ]GB (r ) (35)

where (·) are the -th order Hermite polynomials and = (2 + ! ! )
1 2 is the normalization

constant. The biorthogonality relation at any plane is given by
D
gdHG gHG 0 0

E
= 0 0 In the

eigenvalue Eq. (7) = + for the gHGB. The Fourier transform Eq. (32) of the gHGBs at any transverse
plane is given by

ggHG ( ) = (0)
2

³ ´1 2
¸ +

× ( + )1 2

2

¸
( + )1 2

2

¸
exp

µ
( )

4
2

¶
(36)
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3.3. Generalized Laguerre Gaussian Beams

The gLGBs and their adjoint functions are

gLG (r ) = (0)

µ ¶(2 + ) 2 £
2( ) 2

¤ 2 ¡
2( ) 2

¢½ cos
sin

¾
GB(r ) (37)

gcLG (r ) = (0)

µ ¶(2 + ) 2 £
2( ) 2

¤ 2 £
2( ) 2

¤½ cos
sin

¾
GB(r ) (38)

where (·) are the generalized Laguerre polynomials and = [2 ! (1 + 0 ) ( + )!]1 2 is the normaliza-

tion constant. The biorthogonality relation at any plane is given by
D
gdHG gHG 0 0

E
= 0 0 In

the eigenvalue Eq. (7) = 2 + for the gLGB. The Fourier transform Eq. (32) of the gLGBs at any transverse
plane is given by

gfLG ( ) = (0)
2

³ ´1 2
¸2 +

( + )1 2

2

¸
×

µ
+

4
2

¶½
cos
sin

¾
exp

µ
( )

4
2

¶
(39)

3.4. Properties of the Generalized Families

In comparison with the standard Gaussian beams the gGBs have the same envelope function. However, the
di erences are found in the argument of the Hermite, Laguerre or Ince polynomials. Whereas in the standard
Gaussian beams the arguments are real for all coordinates values, for the gGBs they are in general complex,
with the exceptions of the waist plane when and are real. Therefore, because the Hermite, Laguerre and Ince
polynomials have zeros only for real arguments the gGBs lack of nodal lines in comparison with the standard
Gaussian beams, this property can be used to distinguish both modes experimentally.

As we already derive the generalized Gaussian beam are characterized by two complex parameter and ,
that satisfy Re ( ) 0 and Re (1 ) + Re (1 ) 0. In the special case in which the gGBs converge
to the elegant Gaussian beams.4 The elegant Gaussian beams obtained from the gGBs of Fig. (1) in this
transition are shown in Fig (2). In the special case in which = the gGBs converge to the standard Gaussian
beams, which is the only case where the argument of the polynomials is always real. The standard Gaussian
beams obtained from the gGBs of Fig. (1) in this transition are shown in Fig (3), note the lack of nodal lines
of the gGBs in comparison to the standards ones.

For comparison purposes, in Figs. 2 and 3 we show the transverse amplitudes and phases of several elegant
and standard Gaussian beams at plane = For both families of elegant and standard beams, odd IGB tend
to odd LGBs or HGBs when 0 or , respectively. The indexes of the patterns are included within the
figure.

4. RELATIONS BETWEEN THE GENERALIZED FAMILIES

Let us now examine the relation between gIGBs and gLGBs and gHGBs. The transition from an gIG eigen-
mode into a gLG eigenmode occurs when the elliptic coordinates tend to the circular cylindrical coordinates,
i.e. when 0 In this limit the indices of both modes are related as follows: = and = ( ) 2 On
the other hand, the transition from an gIG eigenmode into a gHG eigenmode occurs when in
this case the indices are related as follows: for even IG modes = and = whereas for odd IG
modes = 1 and = + 1
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f=oo

eHG5eLG1

.4.

eLG5 eIG5 eHG1

Figure 2. Transverse amplitudes and phases of odd eLGBs, odd eIGBs, eHGBs, at = The eIGBs correspond to
= 2 eIGB tend to eLGBs or eHGBs when 0 or , respectively. The transverse extent of each window is 1
cm.

The gIG gLG expansions are written as

gLG =

=2 +X
=0

gIG =2 + (40)

gIG =
X

gLG (41)

The coe cients correspond to the overlap integral between an gIG and a gLG eigenmode, and due to the
proposed normalization these coe cients are the same that relate the standar LG and IG beams,2, 3 then we
have D

gcIG gLG
0 E
= 0 2 + ( ) ( 1) + +( + ) 2 [(1 + 0 ) ( + )! !]1 2

( + ) 2

¡ ¢
(42)

where ( + ) 2

¡ ¢
is the ( + ) 2-th Fourier coe cient of the (·) or (·) Ince polynomial.3 Once

known the gIG gLG relations, the gIG gHG formulae can be readily obtained by applying the already
known LG HG expansions12 in cascade with the gIG gLG expansions, again due to the proposed normal-
ization of the gGBs and their adjoint beams the expansion formulas between LG HG and gLG gHG have
the same coeficients.

Notice that to build up a gLG (or gHG) eigenmode, the constituent gIG eigenmodes must have the same
eigenvalue, consequently the expansions between the three families must involve a finite number of degenerate
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Figure 3. Transverse amplitudes and phases of odd LGBs, od IGBs, HGBs, at = The IGBs correspond to = 2
IGB tend to LGBs or HGBs when 0 or , respectively. The transverse extent of each window is 1 cm.

eigenmodes whose indices satisfy the condition = 2 + = + for a given It is appropriate then to
split each family of gLG, gIG and gHG eigenmodes into subsets of degenerate eigenmodes that share the same
eigenvalue and parity about the positive -axis. In group theory language we can say that each subset of modes
with the same value of corresponds to an irreducible representation of (2). Let L I and H be the
subsets of the (even/odd) gLG, gIG or gHG eigenmodes whose eigenvalue is respectively. It is not di cult
to see that each subset is composed by

=

½
( + 2 ) 2 if is even
( + 1) 2 if is odd

(43)

degenerate eigenmodes that form a complete sub-basis of orthonormal eigenmodes under which any field with
eigenvalue and given parity can be expanded. Therefore any eigenmode of a given subset (e.g. an gIG )
can be constructed as a linear superposition of the eigenmodes of any of the other two subsets (e.g. gLG
or gHG ). The considerations discussed above establish the equivalence between the gIG, gHG and gLG.

The linear relations between subsets L I and H can be written in a matrix notation as follows

I =
£

T
¤
L (44)

H =
£

T
¤
I (45)

L =
£

T
¤
H (46)

where the × transformation matrices
£

T
¤
are real unitary matrices that satisfy

£
T
¤ 1

=£
T
¤ £

T
¤
and whose columns (and rows) form a basis of orthonormal vectors for the -
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th dimensional vector space. Since
£

T
¤
=
£

T
¤ £

T
¤
only two matrices in Eqs. (44) to (46) are

independent.

5. CONCLUSION

In conclusion, we have presented a detailed analysis of the tree families of generalized Gaussian beams, which
are the generalized Hermite, Laguerre, and Ince Gaussian beams. A simple relation between the gGBs and
their adjoint beams was derived. The normalization constant that make the gGBs and their adjoint beams
biorthonormal were obtained. Each family of generalized Gaussian beams includes the standard and elegant
corresponding families as particular cases when the parameters of the generalized families are chosen properly.
The generalized Hermite Gaussian and Laguerre Gaussian beams correspond to limiting cases of the generalized
Ince Gaussian beams when the ellipticity parameter of the latter tends to infinity or to zero, respectively. The
expansion formulas among the three generalized families and their Fourier transforms were also presented.
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