515 research outputs found

    Mating Behavior of a Deep-Sea Squid Revealed by in situ Videography and the Study of Archived Specimens

    Get PDF
    The mating behavior of deep-sea squids is shrouded in mystery. The squids for which mating has been observed use a hectocotylus, a modified arm, for the transfer of sperm packets called spermatophores. However, many deep-sea squid species lack a hectocotylus. We present the first in situ observations of mating behavior in a deep-sea squid that has no hectocotylus but instead uses an elongated terminal organ for the transfer of spermatangia, which are released from the spermatophores and burrow deeply into the female tissue. With remotely operated vehicles (ROVs), we observed two mating pairs of the deep-sea squid Pholidoteuthis adami in the Gulf of Mexico. The male adopted a peculiar position during mating, with its ventral side up and its posterior mantle above the female's head. While the male held the female in what looked like a firm grip, we observed the long terminal organ extending through the funnel of the male, contacting the female dorsal mantle. Examinations of museum specimens show that spermatangia burrow from the outer dorsal mantle into the inner dorsal mantle. This combination of serendipitous in situ observations and archived specimens can be a powerful tool for understanding the behavior of deep-sea animals

    Stacking order dynamic in the quasi-two-dimensional dichalcogenide 1T-TaS2_2 probed with MeV ultrafast electron diffraction

    Full text link
    Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1T-TaS2_2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate ll = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.5 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined from the intensity of the CDW satellites aligned around the incommensurate ll = 1/3 characteristic stacking order. These results might be of relevance in understanding the metallic character of the laser-induced metastable "hidden" state recently discovered in this compound

    XPS and UHV AFM Analysis of the K2CsSb Photocathodes Growth

    Get PDF
    Next generation light sources, based on Energy Recovery Linac and Free Electron Laser technology will rely on photoinjector based electron sources. Successful operation of such sources requires reliable photocathodes with long operational life, uniform and high quantum efficiency, low thermal emittance and low dark current. The goal of this project is to construct a cathode which meets these requirements. Advances in photocathode research must take a combined effort. The materials have to be analyzed by means of chemical composition, surface structure and these findings have to be correlated to the quantum efficiency and performance in the injector. The presented work focuses on the chemical composition and surface structure of K2CsSb photocathodes. The XPS and AFM measurements were performed at the Center of Functional Nanomaterials at BNL. K2CsSb photocathodes were grown under UHV conditions. The components were adsorbed one at a time and after each growth step the corresponding XPS spectra was taken. During growth the quantum efficiency was recorded. As last step the sample was moved into the AFM without exposure to air to determine the surface roughnes

    Spin-Orbit-Induced Orbital Excitations in Sr2RuO4 and Ca2RuO4: A Resonant Inelastic X-ray Scattering Study

    Get PDF
    High-resolution resonant inelastic X-ray scattering (RIXS) at the oxygen K-edge has been used to study the orbital excitations of Ca2RuO4 and Sr2RuO4. In combination with linear dichroism X-ray absorption spectroscopy, the ruthenium 4d-orbital occupation and excitations were probed through their hybridization with the oxygen p-orbitals. These results are described within a minimal model, taking into account crystal field splitting and a spin-orbit coupling \lambda_{so}=200~meV. The effects of spin-orbit interaction on the electronic structure and implications for the Mott and superconducting ground states of (Ca,Sr)2RuO4 are discussed.Comment: accepted in PRB 201

    Non alcoholic fatty liver disease and eNOS dysfunction in humans

    Get PDF
    Background: NAFLD is associated to Insulin Resistance (IR). IR is responsible for Endothelial Dysfunction (ED) through the impairment of eNOS function. Although eNOS derangement has been demonstrated in experimental models, no studies have directly shown that eNOS dysfunction is associated with NAFLD in humans. The aim of this study is to investigate eNOS function in NAFLD patients. Methods: Fifty-four NAFLD patients were consecutively enrolled. All patients underwent clinical and laboratory evaluation and liver biopsy. Patients were divided into two groups by the presence of NAFL or NASH. We measured vascular reactivity induced by patients' platelets on isolated mice aorta rings. Immunoblot assays for platelet-derived phosphorylated-eNOS (p-eNOS) and immunohistochemistry for hepatic p-eNOS have been performed to evaluate eNOS function in platelets and liver specimens. Flow-mediated-dilation (FMD) was also performed. Data were compared with healthy controls. Results: Twenty-one (38, 8%) patients had NAFL and 33 (61, 7%) NASH. No differences were found between groups and controls except for HOMA and insulin (p < 0.0001). Vascular reactivity demonstrated a reduced function induced from NAFLD platelets as compared with controls (p < 0.001), associated with an impaired p-eNOS in both platelets and liver (p < 0.001). NAFL showed a higher impairment of eNOS phosphorylation in comparison to NASH (p < 0.01). In contrast with what observed in vitro, the vascular response by FMD was worse in NASH as compared with NAFL. Conclusions: Our data showed, for the first time in humans, that NAFLD patients show a marked eNOS dysfunction, which may contribute to a higher CV risk. eNOS dysfunction observed in platelets and liver tissue didn't match with FMD

    Immuno-surgical management of pancreatic cancer with analysis of cancer exosomes

    Get PDF
    Exosomes (EXs), a type of extracellular vesicles secreted from various cells and especially cancer cells, mesenchymal cells, macrophages and other cells in the tumor microenvironment (TME), are involved in biologically malignant behaviors of cancers. Recent studies have revealed that EXs contain microRNAs on their inside and express proteins and glycolipids on their outsides, every component of which plays a role in the transmission of genetic and/or epigenetic information in cell-to-cell communications. It is also known that miRNAs are involved in the signal transduction. Thus, EXs may be useful for monitoring the TME of tumor tissues and the invasion and metastasis, processes that are associated with patient survival. Because several solid tumors secrete immune checkpoint proteins, including programmed cell death-ligand 1, the EX-mediated mechanisms are suggested to be potent targets for monitoring patients. Therefore, a companion therapeutic approach against cancer metastasis to distant organs is proposed when surgical removal of the primary tumor is performed. However, EXs and immune checkpoint mechanisms in pancreatic cancer are not fully understood, we provide an update on the recent advances in this field and evidence that EXs will be useful for maximizing patient benefit in precision medicine
    • …
    corecore