9 research outputs found

    MPSS profiling of human embryonic stem cells

    Get PDF
    BACKGROUND: Pooled human embryonic stem cells (hESC) cell lines were profiled to obtain a comprehensive list of genes common to undifferentiated human embryonic stem cells. RESULTS: Pooled hESC lines were profiled to obtain a comprehensive list of genes common to human ES cells. Massively parallel signature sequencing (MPSS) of approximately three million signature tags (signatures) identified close to eleven thousand unique transcripts, of which approximately 25% were uncharacterised or novel genes. Expression of previously identified ES cell markers was confirmed and multiple genes not known to be expressed by ES cells were identified by comparing with public SAGE databases, EST libraries and parallel analysis by microarray and RT-PCR. Chromosomal mapping of expressed genes failed to identify major hotspots and confirmed expression of genes that map to the X and Y chromosome. Comparison with published data sets confirmed the validity of the analysis and the depth and power of MPSS. CONCLUSIONS: Overall, our analysis provides a molecular signature of genes expressed by undifferentiated ES cells that can be used to monitor the state of ES cells isolated by different laboratories using independent methods and maintained under differing culture condition

    Molecular malignancy in melanocytic lesions

    No full text
    Disclosed are methods for determining whether a melanocyte-containing sample (such as a nevus or other pigmented lesion) is benign or a primary melanoma. These methods can include detecting (at the molecular level, e.g., mRNA, miRNA, or protein) the expression of at least two disclosed genes in a biological sample obtained from a subject. Also provided are arrays and kits that can be used with the methods

    Identification of cancer/testis-antigen genes by massively parallel signature sequencing

    No full text
    Massively parallel signature sequencing (MPSS) generates millions of short sequence tags corresponding to transcripts from a single RNA preparation. Most MPSS tags can be unambiguously assigned to genes, thereby generating a comprehensive expression profile of the tissue of origin. From the comparison of MPSS data from 32 normal human tissues, we identified 1,056 genes that are predominantly expressed in the testis. Further evaluation by using MPSS tags from cancer cell lines and EST data from a wide variety of tumors identified 202 of these genes as candidates for encoding cancer/testis (CT) antigens. Of these genes, the expression in normal tissues was assessed by RT-PCR in a subset of 166 intron-containing genes, and those with confirmed testis-predominant expression were further evaluated for their expression in 21 cancer cell lines. Thus, 20 CT or CT-like genes were identified, with several exhibiting expression in five or more of the cancer cell lines examined. One of these genes is a member of a CT gene family that we designated as CT45. The CT45 family comprises six highly similar (>98% cDNA identity) genes that are clustered in tandem within a 125-kb region on Xq26.3. CT45 was found to be frequently expressed in both cancer cell lines and lung cancer specimens. Thus, MPSS analysis has resulted in a significant extension of our knowledge of CT antigens, leading to the discovery of a distinctive X-linked CT-antigen gene family
    corecore