398 research outputs found

    Designing the automatic transformation of visual languages

    Get PDF
    AbstractThe design process of complex systems requires a precise checking of the functional and dependability attributes of the target design. The growing complexity of systems necessitates the use of formal methods, as the exhaustiveness of checks performed by the traditional simulation and testing is insufficient.For this reason, the mathematical models of various formal verification tools are automatically derived from UML-diagrams of the model by mathematical transformations guaranteeing a complete consistency between the target design and the models of verification and validation tools.In the current paper, a general framework for an automated model transformation system is presented. The method starts from a uniform visual description and a formal proof concept of the particular transformations by integrating the powerful computational paradigm of graph transformation, planner algorithms of artificial intelligence, and various concepts of computer engineering

    UML ACTION SEMANTICS FOR MODEL TRANSFORMATION SYSTEMS

    Get PDF
    The Action Semantics for UML provides a standard and platform independent way to describe the behavior of methods and executable actions in object-oriented system design prior to implementation allowing the development of highly automated and optimized code generators for UML CASE tools. Model transformation systems provide visual but formal background to specify arbitrary transformations in the Model Driven Architecture (the leading trend in software engineering). In the current paper, we describe a general encoding of model transformation systems as executable Action Semantics expressions to provide a standard way for automatically generating the implementation of formal (and provenly correct) transformations by off-the-shelf MDA tools. In addition, we point out a weakness in the Action Semantics standard that must be improved to achieve a stand-alone and functionally complete action specification language

    Electron Acceleration by a Bichromatic Chirped Laser Pulse in Underdense Plasmas

    Get PDF
    A theoretical study of laser and plasma based electron acceleration is presented. An effective model has been used, in which the presence of an underdense plasma has been taken account via its index of refraction nmn_{m}. In the confines of this model, the basic phenomena can be studied by numerically solving the classical relativistic equations of motion. The key idea of this paper is the application of chirped, bichromatic laser fields. We investigated the advantages and disadvantages of mixing the second harmonic to the original λ=800nm\lambda = 800 \, \mathrm{nm} wavelength pulse. We performed calculations both for plane wave and Gaussian pulses.Comment: 6 pages, 7 figures. Proceedings to the PIPAMON (2015) conference. Submitted to NIM-B Special Issue (SI:PIPAMON-2015). Accepted for publication: 7th of October, 201

    Electron Acceleration in Underdense Plasmas Described with a Classical Effective Theory

    Full text link
    An effective theory of laser--plasma based particle acceleration is presented. Here we treated the plasma as a continuous medium with an index of refraction nmn_{m} in which a single electron propagates. Because of the simplicity of this model, we did not need to perform PIC simulations in order to study the properties of the electron acceleration. We studied the properties of the electron motion due to the Lorentz force and the relativistic equations of motion were numerically solved and analysed. We compared our results to PIC simulations and experimental data. Keywords: Underdense plasma; Electron acceleration; Classical electrodynamics; Relativistic equation of motion; Ultrashort laser pulsesComment: 14 pages, 7 figures. Proceedings to the ECLIM 2014 Conference (Paris). Submitted to Laser and Particle Beams (Cambridge Journals

    Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation

    Get PDF
    Cellular electrophysiology experiments, important for understanding cardiac arrhythmia mechanisms, are usually performed with channels expressed in non myocytes, or with non-human myocytes. Differences between cell types and species affect results. Thus, an accurate model for the undiseased human ventricular action potential (AP) which reproduces a broad range of physiological behaviors is needed. Such a model requires extensive experimental data, but essential elements have been unavailable. Here, we develop a human ventricular AP model using new undiseased human ventricular data: Ca2+ versus voltage dependent inactivation of L-type Ca2+ current (ICaL); kinetics for the transient outward, rapid delayed rectifier (IKr), Na+/Ca2+ exchange (INaCa), and inward rectifier currents; AP recordings at all physiological cycle lengths; and rate dependence and restitution of AP duration (APD) with and without a variety of specific channel blockers. Simulated APs reproduced the experimental AP morphology, APD rate dependence, and restitution. Using undiseased human mRNA and protein data, models for different transmural cell types were developed. Experiments for rate dependence of Ca2+ (including peak and decay) and intracellular sodium ([Na+]i) in undiseased human myocytes were quantitatively reproduced by the model. Early afterdepolarizations were induced by IKr block during slow pacing, and AP and Ca2+ alternans appeared at rates >200 bpm, as observed in the nonfailing human ventricle. Ca2+/calmodulin-dependent protein kinase II (CaMK) modulated rate dependence of Ca2+ cycling. INaCa linked Ca2+ alternation to AP alternans. CaMK suppression or SERCA upregulation eliminated alternans. Steady state APD rate dependence was caused primarily by changes in [Na+]i, via its modulation of the electrogenic Na+/K+ ATPase current. At fast pacing rates, late Na+ current and ICaL were also contributors. APD shortening during restitution was primarily dependent on reduced late Na+ and ICaL currents due to inactivation at short diastolic intervals, with additional contribution from elevated IKr due to incomplete deactivation
    corecore