25 research outputs found
Tungsten Oxide-Based Z-Scheme for Visible Light-Driven Hydrogen Production from Water Splitting
The stoichiometric water splitting using a solar-driven Z-scheme approach is an emerging field of interest to address the increasing renewable energy demand and environmental concerns. So far, the reported Z-scheme must comprise two populations of photocatalysts. In the present work, only tungsten oxides are used to construct a robust Z-scheme system for complete visible-driven water splitting in both neutral and alkaline solutions, where sodium tungsten oxide bronze (Na0.56WO3–x) is used as a H2 evolution photocatalyst and two-dimensional (2D) tungsten trioxide (WO3) nanosheets as an O2 evolution photocatalyst. This system efficiently produces H2 (14 μmol h–1) and O2 (6.9 μmol h–1) at an ideal molar ratio of 2:1 in an aqueous solution driven by light, resulting in a remarkably high apparent quantum yield of 6.06% at 420 nm under neutral conditions. This exceptional selective H2 and O2 production is due to the preferential adsorption of iodide (I–) on Na0.56WO3–x and iodate (IO3–) on WO3, which is evidenced by both experiments and density functional theory calculation. The present liquid Z-scheme in the presence of efficient shuttle molecules promises a separated H2 and O2 evolution by applying a dual-bed particle suspension system, thus a safe photochemical process
Tungsten oxide-based Z-scheme for visible light-driven hydrogen production from water splitting
The stoichiometric water splitting using a solar-driven Z-scheme approach is an emerging field of interest to address the increasing renewable energy demand and environmental concerns. So far, the reported Z-scheme must comprise two populations of photocatalysts. In the present work, only tungsten oxides are used to construct a robust Z-scheme system for complete visible-driven water splitting in both neutral and alkaline solutions, where sodium tungsten oxide bronze (Na0.56WO3–x) is used as a H2 evolution photocatalyst and two-dimensional (2D) tungsten trioxide (WO3) nanosheets as an O2 evolution photocatalyst. This system efficiently produces H2 (14 μmol h–1) and O2 (6.9 μmol h–1) at an ideal molar ratio of 2:1 in an aqueous solution driven by light, resulting in a remarkably high apparent quantum yield of 6.06% at 420 nm under neutral conditions. This exceptional selective H2 and O2 production is due to the preferential adsorption of iodide (I–) on Na0.56WO3–x and iodate (IO3–) on WO3, which is evidenced by both experiments and density functional theory calculation. The present liquid Z-scheme in the presence of efficient shuttle molecules promises a separated H2 and O2 evolution by applying a dual-bed particle suspension system, thus a safe photochemical process
Control of Electrons' Spin Eliminates Hydrogen Peroxide Formation during Water Splitting
The production of hydrogen through water splitting in a photoelectrochemical cell suffers from an overpotential that limits the efficiencies. In addition, hydrogen-peroxide formation is identified as a competing process affecting the oxidative stability of photoelectrodes. We impose spin-selectivity by coating the anode with chiral organic semiconductors from helically aggregated dyes as sensitizers; Zn-porphyrins and triarylamines. Hydrogen peroxide formation is dramatically suppressed, while the overall current through the cell, correlating with the water splitting process, is enhanced. Evidence for a strong spin-selection in the chiral semiconductors is presented by magnetic conducting (mc-)AFM measurements, in which chiral and achiral Zn-porphyrins are compared. These findings contribute to our understanding of the underlying mechanism of spin selectivity in multiple electron-transfer reactions and pave the way toward better chiral dye-sensitized photoelectrochemical cells
Facile synthesis of carbon doped TiO2 nanowires without an external carbon source and their opto-electronic properties
The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the focused ion beam deposition technique. The opto-electronic properties of individual C-TiO2-NW demonstrate visible light activity and the parameters obtained from photoconductivity measurements reveal very good sensitivity. This methodology opens up the possibility of using C-TiO2-NW in electronic and opto-electronic device applications
Enhanced Raman Spectroscopy of Molecules Adsorbed on Carbon-Doped TiO2 Obtained from Titanium Carbide: A Visible-Light-Assisted Renewable Substrate
Titanium carbide (TiC) is an electrically conducting material with favorable electrochemical properties. In the present studies, carbon-doped TiO2 (C-TiO2) has been synthesized from TiC particles, as well as TiC films coated on stainless steel substrate via thermal annealing under various conditions. Several C-TiO2 substrates are synthesized by varying experimental, conditions and characterized by UV-visible spectroscopy, photoluminescence, X-ray diffraction and X-ray photoelectron spectroscopic techniques. C-TiO2 in the dry state (in powder form as well as in film form) is subsequently used as a substrate for enhancing Raman signals corresponding to 4-mercaptobenzoic acid and 4-nitrothiophenol by utilizing chemical enhancement based on charge-transfer interactions. Carbon, a nonmetal dopant in TiO2, improves the intensities of Raman signals, compared, to undoped TiO2. Significant dependence of Raman intensity on carbon doping is observed. Ameliorated performance obtained using C-TiO2 is attributed to the presence of surface defects that originate due to carbon as a dopant, which, in turn,, triggers charge transfer between TiO2 and analyte. The C-TiO2 substrates are subsequently regenerated for repetitive use by illuminating an analyte-adsorbed substrate with visible light for a period of 5 h
Ashort reviewondirect borohydride fuel cells
Direct borohydride fuel cells (DBFC) use aqueous alkaline sodium borohydride(NaBH4) as anode fuel to generate electric power with either oxygen or hydrogen peroxide as oxidant. The DBFCs are projected to be very handy for portable power appliances such as laptops and mobile phones in addition to their use in extreme conditions such as underwater and portable military applications. This short review discusses the progress in DBFC research based on electrode materials and membranes
Synergistic electrochemical activity of titanium carbide and carbon towards fuel cell reactions
Titanium carbide (TiC) is an electrically conducting refractory interstitial compound possessing several unique properties. A cost-effective, efficient and non-Pt electrocatalyst based on TiC is explored and the multi-functionality of TiC towards various electrochemical reactions that are of significant interest in low temperature fuel cells is studied. Ameliorated activities towards oxygen reduction reaction (ORR) and borohydride oxidation are observed with TiC-carbon composites. High sensitivity and selectivity towards ORR have been demonstrated with very good methanol tolerance. The charge transfer interactions between TiC and carbon seem to play a vital role in the improved activity as compared to their individual counterparts. The present study opens up a way to realize completely Pt-free borohydride fuel cell architecture
Enhanced Raman Spectroscopy of Molecules Adsorbed on Carbon-Doped TiO<sub>2</sub> Obtained from Titanium Carbide: A Visible-Light-Assisted Renewable Substrate
Titanium carbide (TiC) is an electrically conducting
material with
favorable electrochemical properties. In the present studies, carbon-doped
TiO<sub>2</sub> (C-TiO<sub>2</sub>) has been synthesized from TiC
particles, as well as TiC films coated on stainless steel substrate
via thermal annealing under various conditions. Several C-TiO<sub>2</sub> substrates are synthesized by varying experimental conditions
and characterized by UV–visible spectroscopy, photoluminescence,
X-ray diffraction, and X-ray photoelectron spectroscopic techniques.
C-TiO<sub>2</sub> in the dry state (in powder form as well as in film
form) is subsequently used as a substrate for enhancing Raman signals
corresponding to 4-mercaptobenzoic acid and 4-nitrothiophenol by utilizing
chemical enhancement based on charge-transfer interactions. Carbon,
a nonmetal dopant in TiO<sub>2</sub>, improves the intensities of
Raman signals, compared to undoped TiO<sub>2</sub>. Significant dependence
of Raman intensity on carbon doping is observed. Ameliorated performance
obtained using C-TiO<sub>2</sub> is attributed to the presence of
surface defects that originate due to carbon as a dopant, which, in
turn, triggers charge transfer between TiO<sub>2</sub> and analyte.
The C-TiO<sub>2</sub> substrates are subsequently regenerated for
repetitive use by illuminating an analyte-adsorbed substrate with
visible light for a period of 5 h
Morphology dependent oxygen reduction activity of titanium carbide: bulk vs. nanowires
Titanium carbide (TiC) possesses fascinating properties like high electrical conductivity and high mechanical strength coupled with high corrosion resistance and stability in acidic and alkaline environments. The present study demonstrates the tunability of mechanistic aspects of oxygen reduction reaction (ORR) using TiC nanostructures. One dimensional TiC nanostructures (TiC-NW) have been synthesized using a simple, hydrothermal method and used as a catalyst for ORR. Shape dependent electroactivity is demonstrated by comparing the activity of TiC-NW with its bulk counterparts. Comparative studies reveal higher ORR activities in the case of 1D TiC-NW involving similar to 4 electrons showing efficient reduction of molecular oxygen. Excellent stability and high methanol tolerance with good selectivity for ORR is reported