692 research outputs found

    Quantitative Analyses Help in Choosing Between Simultaneous vs. Separate EEG and fMRI

    Get PDF
    Simultaneous registration of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is considered an attractive approach for studying brain function non-invasively. It combines the better spatial resolution of fMRI with the better temporal resolution of EEG, but comes at the cost of increased measurement artifact and the accompanying artifact preprocessing. This paper presents a study of the residual signal quality based on temporal signal to noise ratio (TSNR) for fMRI and fast Fourier transform (FFT) for EEG, after optimized conventional signal preprocessing. Measurements outside the magnetic resonance imaging scanner and inside the scanner prior to and during image acquisition were compared. For EEG, frequency and region dependent significant effects on FFT squared amplitudes were observed between separately vs. simultaneously recorded EEG and fMRI, with larger effects during image acquisition than without image acquisition inside the scanner bore. A graphical user interface was developed to aid in quality checking these measurements. For fMRI, separately recorded EEG-fMRI revealed relatively large areas with a significantly higher TSNR in right occipital and parietal regions and in the cingulum, compared to separately recorded EEG-fMRI. Simultaneously recorded EEG-fMRI showed significantly higher TSNR in inferior occipital cortex, diencephalon and brainstem, compared to separately recorded EEG-fMRI. Quantification of EEG and fMRI signals showed significant, but sometimes subtle, changes between separate compared to simultaneous EEG-fMRI measurements. To avoid interference with the experiment of interest in a simultaneous EEG-fMRI measurement, it seems warranted to perform a quantitative evaluation to ensure that there are no such uncorrectable effects present in regions or frequencies that are of special interest to the research question at hand

    The Diest Formation : a review of insights from the last decades

    Get PDF
    Research conducted since the 1960s on the upper Miocene Diest Formation in NE Belgium is reviewed and integrated. Their lithology unites the deposits of the glauconiferous Diest Sand in one formation, though biozones and internal sedimentary structures strongly suggest the formation may agglomerate the deposits of two separate, successive sedimentary cycles. The lowermost cycle is thought to have deposited the "Hageland Diest sand" during the early or middle Tortonian. It contains the Diest Sand in the main outcrop area in Hageland, Zuiderkempen and central Limburg, and probably also the Deurne Member near the city of Antwerpen. It furthermore includes the lower part of the Dessel Member in the central Kempen and in the Belgian part of the Roer Valley Graben (RVG). The Hageland Diest cycle represents the infill of a large tidal inlet tributary to the southern North Sea bight, then situated over the southern Netherlands and the Lower Rhine embayment. The Hageland Diest sand has the composition of a marine deposit, yet the confined area of occurrence and the presence of tens of metres deep incisions at the base, set it apart. The confinement of the embayment, strong tides and a steady supply of coastal-marine sand arc invoked as the main driving forces that resulted in the distinctive geometry and internal architecture of the unit. The upper cycle is associated with the "Kempen Diest sand", which is found in the subsurface of the RVG and the Noorderkempen. It has a late Tortonian to earliest Messinian age with progressively younger ages occurring to the NW. It encompasses the upper part of the Dessel Member and the overlying, coarser Diest Sand, and correlates to most or all of the thickly developed Diessen Formation in The Netherlands. It is the deposit of a prograding marine delta, containing both marine components and continental components fed by the palaeo-Meuse/Rhine river mouths. Accommodation space kept increasing during deposition, due to subsidence of the deposition area, especially inside the RVG but also in the Noorderkempen. Although there is a fair consensus on the above, many concrete points about the geometry and depositional history of the Diest Formation and even a definitive decision on its single or dual character remain to be sorted out. In addition, this review excludes the Flemish Hills sand and the Gruitrode Member from the Diest Formation

    The implications of K-Ar glauconite dating of the Diest Formation on the paleogeography of the Upper Miocene in Belgium

    Get PDF
    The glauconite-rich Diest Formation in central and north Belgium contains sands in the Campine subsurface and the hilly Hageland area that can be distinguished from each other. The Hageland Diest Sands member contains no stratigraphically relevant fossils while in the Campine subsurface dinoflagellate cysts are common and show a stratigraphic range covering the entire Tortonian stage. K-Ar dates were determined for glauconite from 13 selected samples spread over both areas. A glauconite date corresponding to the earliest Tortonian indicates newly formed glauconite was incorporated into a greensand at the base of the Diest Formation in the central Campine area. All other dates point at reworked glauconite and can be organized in two groups, one reflecting a Burdigalian age and another reflecting a Langhian age. These data and the thickness and glauconite content of the Diest Formation imply massive reworking of older Miocene deposits. The paleogeographic implications of these data lead to the tentative recognition of two Tortonian sedimentary sequences. An older one corresponding to dinoflagellate biochron DN8 comprises the Deurne Member, part of the Dessel Member, the Hageland Diest member, the eastern Campine Diest member and some basal sands of the Diest Formation in the central Campine. A younger sequence corresponding to dinoilagellate biochrons DN9 and 10 was strongly influenced by the prograding proto-Rhine delta front in the Roer Valley Graben to the northeast. The subsiding Campine basin was filled from east to west during this second cycle

    A case of vitamin B12 deficiency neurological syndrome in a young adult due to late-onset cobalamin C (CblC) deficiency: a diagnostic challenge

    Get PDF
    Vitamin B12 deficiency can present with neurologic and psychiatric symptoms without macrocytic anaemia. We describe a case of late-onset cobalamin C deficiency which typically presents with normal serum vitamin B12 concentrations, posing an additional diagnostic challenge. A 23-year-old woman with decreased muscle strength and hallucinations was diagnosed with ‘catatonic depression’ and admitted to a residential mental health facility. She was referred to our hospital for further investigation 3 months later. Heteroanamnesis revealed that the symptoms had been evolving progressively over several months. Magnetic resonance imaging (MRI) of the brain showed diffuse symmetrical white matter lesions in both hemispheres. Routine laboratory tests including vitamin B12 and folic acid were normal except for a slight normocytic, normochromic anaemia. Over the next 6 weeks her symptoms deteriorated, and she became unresponsive to stimuli. A new MRI scan showed progression of the white matter lesions. The neurologist requested plasma homocysteine (Hcys) which was more than 8 times the upper limit of normal. Further testing revealed increased methylmalonic acid and the patient was diagnosed with adult-onset cobalamin C deficiency. This case illustrates that Hcys and/or methylmalonic acid should be determined in patients presenting with neuropsychiatric symptoms suggestive of vitamin B12 deficiency with a normal serum vitamin B12 to rule out a late-onset cobalamin C deficiency

    Electrocorticography of Spatial Shifting and Attentional Selection in Human Superior Parietal Cortex

    Get PDF
    Spatial-attentional reorienting and selection between competing stimuli are two distinct attentional processes of clinical and fundamental relevance. In the past, reorienting has been mainly associated with inferior parietal cortex. In a patient with a subdural grid covering the upper and lower bank of the left anterior and middle intraparietal sulcus (IPS) and the superior parietal lobule (SPL), we examined the involvement of superior parietal cortex using a hybrid spatial cueing paradigm identical to that previously applied in stroke and in healthy controls. In SPL, as early as 164 ms following target onset, an invalidly compared to a validly cued target elicited a positive event-related potential (ERP) and an increase in intertrial coherence (ITC) in the theta band, regardless of the direction of attention. From around 400–650 ms, functional connectivity [weighted phase lag index (wPLI) analysis] between SPL and IPS briefly inverted such that SPL activity was driving IPS activity. In contrast, the presence of a competing distracter elicited a robust change mainly in IPS from 300 to 600 ms. Within superior parietal cortex reorienting of attention is associated with a distinct and early electrophysiological response in SPL while attentional selection is indexed by a relatively late electrophysiological response in the IPS. The long latency suggests a role of IPS in working memory or cognitive control rather than early selection

    Representation of Semantic Similarity in the Left Intraparietal Sulcus: Functional Magnetic Resonance Imaging Evidence

    Get PDF
    According to a recent study, semantic similarity between concrete entities correlates with the similarity of activity patterns in left middle IPS during category naming. We examined the replicability of this effect under passive viewing conditions, the potential role of visuoperceptual similarity, where the effect is situated compared to regions that have been previously implicated in visuospatial attention, and how it compares to effects of object identity and location. Forty-six subjects participated. Subjects passively viewed pictures from two categories, musical instruments and vehicles. Semantic similarity between entities was estimated based on a concept-feature matrix obtained in more than 1,000 subjects. Visuoperceptual similarity was modeled based on the HMAX model, the AlexNet deep convolutional learning model, and thirdly, based on subjective visuoperceptual similarity ratings. Among the IPS regions examined, only left middle IPS showed a semantic similarity effect. The effect was significant in hIP1, hIP2, and hIP3. Visuoperceptual similarity did not correlate with similarity of activity patterns in left middle IPS. The semantic similarity effect in left middle IPS was significantly stronger than in the right middle IPS and also stronger than in the left or right posterior IPS. The semantic similarity effect was similar to that seen in the angular gyrus. Object identity effects were much more widespread across nearly all parietal areas examined. Location effects were relatively specific for posterior IPS and area 7 bilaterally. To conclude, the current findings replicate the semantic similarity effect in left middle IPS under passive viewing conditions, and demonstrate its anatomical specificity within a cytoarchitectonic reference frame. We propose that the semantic similarity effect in left middle IPS reflects the transient uploading of semantic representations in working memory

    A 22-single nucleotide polymorphism Alzheimer's disease risk score correlates with family history, onset age, and cerebrospinal fluid Aβ42

    Get PDF
    Introduction: The ability to identify individuals at increased genetic risk for Alzheimer's disease (AD) may streamline biomarker and drug trials and aid clinical and personal decision making. Methods: We evaluated the discriminative ability of a genetic risk score (GRS) covering 22 published genetic risk loci forADin 1162 Flanders-BelgianADpatients and 1019 controls and assessed correlations with family history, onset age, and cerebrospinal fluid (CSF) biomarkers (A beta(1-42), T-Tau, P-Tau(181P)). Results: A GRS including all single nucleotide polymorphisms (SNPs) and age-specific APOE epsilon 4 weights reached area under the curve (AUC) 0.70, which increased to AUC 0.78 for patients with familial predisposition. Risk of AD increased with GRS (odds ratio, 2.32 (95% confidence interval 2.08-2.58 per unit; P < 1.0e(-15)). Onset age and CSF Ab1-42 decreased with increasing GRS (P-onset_age 5 9.0e(-11); P-A beta = 8.9e(-7)). Discussion: The discriminative ability of this 22-SNP GRS is still limited, but these data illustrate that incorporation of age-specific weights improves discriminative ability. GRS-phenotype correlations highlight the feasibility of identifying individuals at highest susceptibility. (C) 2015 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer's Association

    The Kasterlee Formation and its relation with the Diest and Mol Formations in the Belgian Campine

    Get PDF
    Stratigraphic analysis of cored and geophysically logged boreholes in the Kasterlee-Geel-Retie-Mol-Dessel area of the Belgian Campine has established the presence of two lithostratigraphic units between the classical Diest and Mol Formations, geometrically related to the type Kasterlee Sand occurring west of the Kasterlee village and the study area. A lower 'clayey Kasterlee' unit, equivalent to the lithology occurring at the top of the Beerzel and Heist-op-den-Berg hills, systematically occurs to the east of the Kasterlee village. An overlying unit has a pale colour making it lithostratigraphically comparable to Mol Sand although its fine grain size, traces of glauconite and geometrical position have traditionally led stratigraphers to consider it as a lateral variety of the type Kasterlee Sand; it has been named the 'lower Mol' or 'Kasterlee-sensu-Gulinck' unit in this study. In the present analysis, the greenish glauconitic Kasterlee Sand in its hilly stratotype area evolves eastwards into the lower 'clayey Kasterlee' unit and possibly also into an overlying 'lower Mol' or `Kasterlee-sensu-Gulinck' unit, although it is equally possible that the latter unit has an erosive contact and therefore is stratigraphically slightly younger than the type Kasterlee Sand west of the Kasterlee village. A lateral extension of this detailed stratigraphic succession into the faulted one of east Limburg is proposed

    Aβ profiles generated by Alzheimer's disease causing PSEN1 variants determine the pathogenicity of the mutation and predict age at disease onset.

    Get PDF
    Familial Alzheimer’s disease (FAD), caused by mutations in Presenilin (PSEN1/2) and Amyloid Precursor Protein (APP) genes, is associated with an early age at onset (AAO) of symptoms. AAO is relatively consistent within families and between carriers of the same mutations, but differs markedly between individuals carrying different mutations. Gaining a mechanistic understanding of why certain mutations manifest several decades earlier than others is extremely important in elucidating the foundations of pathogenesis and AAO. Pathogenic mutations affect the protease (PSEN/γ-secretase) and the substrate (APP) that generate amyloid β (Aβ) peptides. Altered Aβ metabolism has long been associated with AD pathogenesis, with absolute or relative increases in Aβ42 levels most commonly implicated in the disease development. However, analyses addressing the relationships between these Aβ42 increments and AAO are inconsistent. Here, we investigated this central aspect of AD pathophysiology via comprehensive analysis of 25 FAD-linked Aβ profiles. Hypothesis- and data-driven approaches demonstrate linear correlations between mutation-driven alterations in Aβ profiles and AAO. In addition, our studies show that the Aβ (37 + 38 + 40) / (42 + 43) ratio offers predictive value in the assessment of ‘unclear’ PSEN1 variants. Of note, the analysis of PSEN1 variants presenting additionally with spastic paraparesis, indicates that a different mechanism underlies the aetiology of this distinct clinical phenotype. This study thus delivers valuable assays for fundamental, clinical and genetic research as well as supports therapeutic interventions aimed at shifting Aβ profiles towards shorter Aβ peptides
    corecore