38 research outputs found
Nanotools for Neuroscience and Brain Activity Mapping
Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function
Biomimetic surface patterning for long-term transmembrane access
Here we present a planar patch clamp chip based on biomimetic cell membrane fusion. This architecture uses nanometer length-scale surface patterning to replicate the structure and function of membrane proteins, creating a gigaohm seal between the cell and a planar electrode array. The seal is generated passively during cell spreading, without the application of a vacuum to the cell surface. This interface can enable cell-attached and whole-cell recordings that are stable to 72 hours, and generates no visible damage to the cell. The electrodes can be very small (<5 μm) and closely packed, offering a high density platform for cellular measurement
Integration of 2D and 3D Thin Film Glassy Carbon Electrode Arrays for Electrochemical Dopamine Sensing in Flexible Neuroelectronic Implants
Here we present the development and characterization of a flexible implantable neural probe with glassy carbon electrode arrays. The use of carbon electrodes allows for these devices to be used as chemical sensors, in addition to their typical use as electrical sensors and stimulators. The devices are fabricated out of polyimide, platinum, titanium, and carbon with standard microfabrication techniques on carrier wafers. The devices are released from the substrate through either chemical or electrochemical dissolution of the underlying substrate material. The glassy carbon electrode arrays are produced through the pyrolysis of SU-8 pillars at 900 °C as the first process step, as this temperature is incompatible with the other device materials. The process demonstrated here is generally applicable, allowing for the integration of various high temperature materials into flexible devices
Nanostraws for Direct Fluidic Intracellular Access
Nanomaterials are promising candidates to improve the
delivery efficiency and control of active agents such as DNA or drugs
directly into cells. Here we demonstrate cell-culture platforms of
nanotemplated “nanostraws” that pierce the cell membrane,
providing a permanent fluidic pipeline into the cell for direct cytosolic
access. Conventional polymeric track-etch cell culture membranes are
alumina coated and etched to produce fields of nanostraws with controllable
diameter, thickness, and height. Small molecules and ions were successfully
transported into the cytosol with 40 and 70% efficiency, respectively,
while GFP plasmids were successfully delivered and expressed. These
platforms open the way for active, reproducible delivery of a wide
variety of species into cells without endocytosis
A microfluidic approach to synthesizing high-performance microfibers with tunable anhydrous proton conductivity
Here, we demonstrate a new approach for the synthesis of ion exchange microfibers with finely tuned anhydrous conductivity. This work presents microfluidics as a system to control the size and phosphoric acid (PA) doping level of the polybenzimidazole (PBI) microfibers. It has been shown that the PA doping level can be controlled by varying the flow ratios in the microfluidic channel. The diameter of the microfibers increased with extending mixing time, whereas the doping level decreased with increasing flow ratio. The highest doping level, 16, was achieved at the flow ratio of 0.175. The anhydrous proton conductivity of the microfibers was found to be adjustable between 0.01 and 0.1 S cm(-1) at 160 degrees C, which is considerably higher than for conventionally doped PBI cast membranes (0.004 S cm(-1)). Furthermore, molecular dynamic simulation of proton conduction through the microfibers at different doping levels was in good agreement with the experimental results. These results demonstrate the potential of the microfluidic technique to precisely tune the physicochemical properties of PBI microfibers for various electrochemical applications such as hydrogen sensors, fuel cells as well as artificial muscles