30 research outputs found
Intestinal Epithelial Serum Amyloid A Modulates Bacterial Growth In Vitro and Pro-Inflammatory Responses in Mouse Experimental Colitis
<p>Abstract</p> <p>Background</p> <p>Serum Amyloid A (SAA) is a major acute phase protein of unknown function. SAA is mostly expressed in the liver, but also in other tissues including the intestinal epithelium. SAA reportedly has anti-bacterial effects, and because inflammatory bowel diseases (IBD) result from a breakdown in homeostatic interactions between intestinal epithelia and bacteria, we hypothesized that SAA is protective during experimental colitis.</p> <p>Methods</p> <p>Intestinal SAA expression was measured in mouse and human samples. Dextran sodium sulfate (DSS) colitis was induced in SAA 1/2 double knockout (DKO) mice and in wildtype controls. Anti-bacterial effects of SAA1/2 were tested in intestinal epithelial cell lines transduced with adenoviral vectors encoding the CE/J SAA isoform or control vectors prior to exposure to live <it>Escherichia coli</it>.</p> <p>Results</p> <p>Significant levels of SAA1/SAA2 RNA and SAA protein were detected by in situ hybridization and immunohistochemistry in mouse colonic epithelium. SAA3 expression was weaker, but similarly distributed. SAA1/2 RNA was present in the ileum and colon of conventional mice and in the colon of germfree mice. Expression of SAA3 was strongly regulated by bacterial lipopolysaccharides in cultured epithelial cell lines, whereas SAA1/2 expression was constitutive and not LPS inducible. Overexpression of SAA1/2 in cultured epithelial cell lines reduced the viability of co-cultured <it>E. coli</it>. This might partially explain the observed increase in susceptibility of DKO mice to DSS colitis. SAA1/2 expression was increased in colon samples obtained from Crohn's Disease patients compared to controls.</p> <p>Conclusions</p> <p>Intestinal epithelial SAA displays bactericidal properties in vitro and could play a protective role in experimental mouse colitis. Altered expression of SAA in intestinal biopsies from Crohn's Disease patients suggests that SAA is involved in the disease process..</p
Lung response to Bordetella pertussis infection in mice identified by gene-expression profiling
Host genetics determines the course of Bordetella pertussis infection in mice. Previously, we found four loci, Tlr4 and three novel loci, designated Bps 1–3, that are involved in the control of B. pertussis infection. The purpose of the present study was to identify candidate genes that could explain genetic differences in the course of B. pertussis infection, assuming that such genes are differentially regulated upon infection. We, therefore, studied the course of mRNA expression in the lungs after B. pertussis infection. Of the 22,000 genes investigated, 1,841 were significantly differentially expressed with 1,182 genes upregulated and 659 genes downregulated. Upregulated genes were involved in immune-related processes, such as the acute-phase response, antigen presentation, cytokine production, inflammation, and apoptosis, while downregulated genes were mainly involved in nonimmune processes, such as development and muscle contraction. Pathway analysis revealed the involvement of granulocyte function, toll-like receptor signaling pathway, and apoptosis. Nine of the differentially expressed genes were located in Bps-1, 13 were located in Bps-2, and 62 were located in Bps-3. We conclude that B. pertussis infection induces a wide and complex response, which appears to be partly specific for B. pertussis and partly nonspecific. We envisage that these data will be helpful in identifying polymorphic genes that affect the susceptibility and course of B. pertussis infection in humans
Scavenger Receptor CD36 Expression Contributes to Adipose Tissue Inflammation and Cell Death in Diet-Induced Obesity
The enlarged adipose tissue in obesity is characterized by inflammation, including the recruitment and infiltration of macrophages and lymphocytes. The objective of this study was to investigate the role of the scavenger receptor CD36 in high fat diet-induced obesity and adipose tissue inflammation and cell death.Obesity and adipose tissue inflammation was compared in CD36 deficient (CD36 KO) mice and wild type (WT) mice fed a high fat diet (60% kcal fat) for 16 weeks and the inflammatory response was studied in primary adipocytes and macrophages isolated from CD36 KO and WT mice.Compared to WT mice, CD36 KO mice fed a high fat diet exhibited reduced adiposity and adipose tissue inflammation, with decreased adipocyte cell death, pro-inflammatory cytokine expression and macrophage and T-cell accumulation. In primary cell culture, the absence of CD36 expression in macrophages decreased pro-inflammatory cytokine, pro-apoptotic and ER stress gene expression in response to lipopolysaccharide (LPS). Likewise, CD36 deficiency in primary adipocytes reduced pro-inflammatory cytokine and chemokine secretion in response to LPS. Primary macrophage and adipocyte co-culture experiments showed that these cell types act synergistically in their inflammatory response to LPS and that CD36 modulates such synergistic effects.CD36 enhances adipose tissue inflammation and cell death in diet-induced obesity through its expression in both macrophages and adipocytes
Establishment of a Transgenic Mouse Model Specifically Expressing Human Serum Amyloid A in Adipose Tissue
Obesity and obesity co-morbidities are associated with a low grade inflammation and elevated serum levels of acute phase proteins, including serum amyloid A (SAA). In the non-acute phase in humans, adipocytes are major producers of SAA but the function of adipocyte-derived SAA is unknown. To clarify the role of adipocyte-derived SAA, a transgenic mouse model expressing human SAA1 (hSAA) in adipocytes was established. hSAA expression was analysed using real-time PCR analysis. Male animals were challenged with a high fat (HF) diet. Plasma samples were subjected to fast protein liquid chromatography (FPLC) separation. hSAA, cholesterol and triglyceride content were measured in plasma and in FPLC fractions. Real-time PCR analysis confirmed an adipose tissue-specific hSAA gene expression. Moreover, the hSAA gene expression was not influenced by HF diet. However, hSAA plasma levels in HF fed animals (37.7±4.0 µg/mL, n = 7) were increased compared to those in normal chow fed animals (4.8±0.5 µg/mL, n = 10; p<0.001), and plasma levels in the two groups were in the same ranges as in obese and lean human subjects, respectively. In FPLC separated plasma samples, the concentration of hSAA peaked in high-density lipoprotein (HDL) containing fractions. In addition, cholesterol distribution over the different lipoprotein subfractions as assessed by FPLC analysis was similar within the two experimental groups. The established transgenic mouse model demonstrates that adipose tissue produced hSAA enters the circulation, resulting in elevated plasma levels of hSAA. This new model will enable further studies of metabolic effects of adipose tissue-derived SAA
Founder mutations in the LDL receptor gene contribute significantly to the familial hypercholesterolemia phenotype in the indegenous South African population of mixed ancestry.
GesondheidswetenskappeVerloskunde En GinekologiePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]
A 3-basepair deletion in repeat 1 of the LDL receptor promoter reduces transcriptional activity in a South African Pedi
We have examined a naturally occurring mutation in the promoter region of the low density lipoprotein receptor (LDLR) gene of a South African Black patient with a clinical diagnosis of familial hypercholesterolemia (FH). The mutation constitutes a 3-bp deletion at nucleotide position -92 (FH Pedi-2) in the distal Sp1 binding site in repeat 1 of the LDLR promoter. The patient carries a second mutant LDLR allele containing a 1-bp deletion in exon 2 (FH Pedi-1) that gives rise to a frameshift mutation. Consistent with low receptor activity previously observed in cultured fibroblasts from the patient (5-15%), the rate of LDL receptor synthesis was markedly reduced to less than 20% of normal. DNase I footprint analysis indicated that the -92 mutation abolished binding of Sp1 to repeat 1 in the LDLR promoter. Transcription studies in transfected cells using normal and mutant promoter fragments linked to a luciferase reporter gene demonstrated that the promoter fragment containing the -92 mutation had approximately 10% of normal promoter activity. These findings indicate that the distal Sp1 binding site is essential for maximal activity of the normal intact LDLR promoter
Exercise protects against doxorubicin-induced oxidative stress and proteolysis in skeletal muscle
Doxorubicin (Dox) is a potent antitumor agent used in cancer treatment. Unfortunately, Dox is myotoxic and results in significant reductions in skeletal muscle mass and function. Complete knowledge of the mechanism(s) by which Dox induces toxicity in skeletal muscle is incomplete, but it is established that Dox-induced toxicity is associated with increased generation of reactive oxygen species and oxidative damage within muscle fibers. Since muscular exercise promotes the expression of numerous cytoprotective proteins (e.g., antioxidant enzymes, heat shock protein 72), we hypothesized that muscular exercise will attenuate Dox-induced damage in exercise-trained muscle fibers. To test this postulate, Sprague-Dawley rats were randomly assigned to the following groups: sedentary, exercise, sedentary with Dox, or exercise with Dox. Our results show increased oxidative stress and activation of cellular proteases (calpain and caspase-3) in skeletal muscle of animals treated with Dox. Importantly, our findings reveal that exercise can prevent the Dox-induced oxidative damage and protease activation in the trained muscle. This exercise-induced protection against Dox-induced toxicity may be due, at least in part, to an exercise-induced increase in muscle levels of antioxidant enzymes and heat shock protein 72. Together, these novel results demonstrate that muscular exercise is a useful countermeasure that can protect skeletal muscle against Dox treatment-induced oxidative stress and protease activation in skeletal muscles