2,933 research outputs found
First-Principles Investigation of Perfect and Diffuse Anti-Phase Boundaries in HCP-Based Ti-Al Alloys
First-principles thermodynamic models based on the cluster expansion
formalism, monte-carlo simulations and quantum-mechanical total energy
calculations are employed to compute short-range-order parameters and
diffuse-antiphase-boundary energies in hcp-based -Ti-Al alloys. Our
calculations unambiguously reveal a substantial amount of SRO is present in
-Ti-6 Al and that, at typical processing temperatures concentrations,
the DAPB energies associated with a single dislocation slip can reach 25
mJ/m. We find very little anisotropy between the energies of DAPBs lying
in the basal and prism planes. Perfect antiphase boundaries in DO
ordered TiAl are also investigated and their interfacial energies,
interfacial stresses and local displacements are calculated from first
principles through direct supercell calculations. Our results are discussed in
light of mechanical property measurements and deformation microstructure
strudies in Ti-Al alloys
Surface energetics and structure of the Ge wetting layer on Si(100)
Ge deposited on Si(100) initially forms heteroepitaxial layers, which grow to a critical thickness of ~3 MLs before the appearance of three-dimensional strain relieving structures. Experimental observations reveal that the surface structure of this Ge wetting layer is a dimer vacancy line (DVL) superstructure of the unstrained Ge(100) dimer reconstruction. In the following, the results of first-principles calculations of the thickness dependence of the wetting layer surface excess energy for the c(4×2) and 4×6 DVL surface reconstructions are reported. These results predict a wetting layer critical thickness of ~3 MLs, which is largely unaffected by the presence of dimer vacancy lines. The 4×6 DVL reconstruction is found to be thermodynamically stable with respect to the c(4×2) structure for wetting layers at least 2 ML thick. A strong correlation between the fraction of total surface induced deformation present in the substrate and the thickness dependence of wetting layer surface energy is also shown
Modeling carbon black reinforcement in rubber compounds
One of the advocated reinforcement mechanisms is the formation by the filler of a network interpenetrating the polymer network. The deformation and reformation of the filler network allows the explanation of low strain dynamic physical properties of the composite. The present model relies on a statistical study of a collection of elementary mechanical systems, This leads to a mathematical approach of the complex modulus G* = G' + iG". The storage and loss modulus (G' and G", respectively), are expressed in the form of two integrals capable of modeling their Variation with respect to strain
Structure, energetics, and mechanical stability of Fe-Cu bcc alloys from first-principles calculations
Atomic volumes, magnetic moments, mixing energies, and the elastic properties of bcc Fe1–xCux solid solutions are studied by ab initio calculations based on the cluster expansion framework. For the calculation of concentration-dependent elastic moduli in disordered solid solutions, we introduce a generalization of the cluster expansion technique that is designed to handle tensorial quantities in high-symmetry phases. Calculated mixing energies, atomic volumes, and magnetic moments are found to be in good agreement with available measurements for metastable alloys prepared through nonequilibrium processing techniques. Additionally, the predicted variations of the bulk modulus and shear moduli C44 and C[prime] with respect to copper concentration are calculated for the disordered bcc phase. While the bulk modulus and C44 are positive for all concentrations, C[prime] is predicted to be positive only for Cu concentration less than 50 atomic %, and negative otherwise. Our results thus indicate that the mechanical instability of bcc Cu persists over a wide range of compositions. The implications of the present results are discussed in relation to the observed metastability of bcc Fe-Cu alloys, and the strengthening mechanism of nanoscale bcc precipitates in an alpha-Fe matrix
Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic
Monte Carlo (MC) simulations of lattice models are a widely used way to
compute thermodynamic properties of substitutional alloys. A limitation to
their more widespread use is the difficulty of driving a MC simulation in order
to obtain the desired quantities. To address this problem, we have devised a
variety of high-level algorithms that serve as an interface between the user
and a traditional MC code. The user specifies the goals sought in a high-level
form that our algorithms convert into elementary tasks to be performed by a
standard MC code. For instance, our algorithms permit the determination of the
free energy of an alloy phase over its entire region of stability within a
specified accuracy, without requiring any user intervention during the
calculations. Our algorithms also enable the direct determination of
composition-temperature phase boundaries without requiring the calculation of
the whole free energy surface of the alloy system
First-principles calculation of phase equilibrium of V-Nb, V-Ta, and Nb-Ta alloys
In this paper, we report the calculated phase diagrams of V-Nb, V-Ta, and Nb-Ta alloys computed by combining the total energies of 40–50 configurations for each system (obtained using density functional theory) with the cluster expansion and Monte Carlo techniques. For V-Nb alloys, the phase diagram computed with conventional cluster expansion shows a miscibility gap with consolute temperature T_c=1250 K. Including the constituent strain to the cluster expansion Hamiltonian does not alter the consolute temperature significantly, although it appears to influence the solubility of V- and Nb-rich alloys. The phonon contribution to the free energy lowers T_c to 950 K (about 25%). Our calculations thus predicts an appreciable miscibility gap for V-Nb alloys. For bcc V-Ta alloy, this calculation predicts a miscibility gap with T_c=1100 K. For this alloy, both the constituent strain and phonon contributions are found to be significant. The constituent strain increases the miscibility gap while the phonon entropy counteracts the effect of the constituent strain. In V-Ta alloys, an ordering transition occurs at 1583 K from bcc solid solution phase to the V_(2)Ta Laves phase due to the dominant chemical interaction associated with the relatively large electronegativity difference. Since the current cluster expansion ignores the V_(2)Ta phase, the associated chemical interaction appears to manifest in making the solid solution phase remain stable down to 1100 K. For the size-matched Nb-Ta alloys, our calculation predicts complete miscibility in agreement with experiment
Cluster expansion Monte Carlo study of phase stability of vanadium nitrides
Phase stability of stable and metastable vanadium nitrides is studied using density functional theory (DFT) based total-energy calculations combined with cluster expansion Monte Carlo simulation and supercell methods. We have computed the formation enthalpy of the various stable and metastable vanadium nitride phases considering the available structural models and found that the formation enthalpies of the different phases decrease in the same order as they appear in the experimental aging sequence. DFT calculations are known to show stoichiometric V2N to be polymorphic in ϵ-Fe_2N and ζ-Fe2_N structures within a few meV and VN to be more stable in WC(B_h) phase than in the experimentally observed NaCl(B1) structure. As these nitrides are known to be generally nonstoichiometric due to presence of nitrogen vacancies, we used cluster expansion and supercell methods for examining the effect of nitrogen vacancies on the phase stability. It is found that nitrogen vacancies, represented by ◻, stabilize ϵ-Fe_2N phase of V_2N_(1−x◻x) and NaCl(B1) phase of VN_(1−x◻x) compared to ζ-Fe_2N and WC(B_h) phases respectively, rendering the computed phase stability scenario to be in agreement with experiments. Analysis of supercell calculated electronic density of states (DOS) of VN_(1−x◻x) with varying x, shows that the nitrogen vacancies increase the DOS at Fermi level in WC phase, whereas they decrease the DOS in NaCl phase. And this serves as the mechanism of enhancement of the stability of the NaCl phase. Monte Carlo simulations were used for computing the finite temperature formation enthalpies of these phases as a function of nitrogen-vacancy concentration and found close agreement for NaCl(B1) phase of VN_(1−x◻x) for which measured values are available
Influence of damaging and wilting red clover on lipid metabolism during ensiling and in vitro rumen incubation
This paper describes the relationship between protein-bound phenols in red clover, induced by different degrees of damaging before wilting and varying wilting duration, and in silo lipid metabolism. The ultimate effect of these changes on rumen biohydrogenation is the second focus of this paper For this experiment, red clover, damaged to different degrees (not damaged (ND), crushing or frozen/thawing (FT)) before wilting (4 or 24 h) was ensiled. Different degrees of damaging and wilting duration lead to differences in polyphenol oxidase (PPO) activity, measured as increase in protein-bound phenols. Treatment effects on fatty acid (FA) content and composition, lipid fractions (free FAs, membrane lipids (ML) and neutral fraction) and lipolysis were further studied in the silage. In FT, red clover lipolysis was markedly lower in the first days after ensiling, but this largely disappeared after 60 days of ensiling, regardless of wilting duration. This suggests an inhibition of plant lipases in FT silages. After 60 days of ensiling no differences in lipid fractions could be found between any of the treatments and differences in lipolysis were caused by reduced FA proportions in ML of wilted FT red clover Fresh, wilted (24 h) after damaging (ND or FT) and ensiled (4 or 60 days; wilted 24 h; ND or FT) red clover were also incubated in rumen fluid to study the biohydrogenation of C18:3n-3 and C18:2n-6 in vitro. Silages (both 60 days and to a lower degree 4 days) showed a lower biohydrogenation compared with fresh and wilted forages, regardless of damaging. This suggests that lipids in ensiled red clover were more protected, but this protection was not enhanced by a higher amount of protein-bound phenols in wilted FT compared with ND red clover The reduction of rumen microbial biohydrogenation with duration of red clover ensiling seems in contrast to what is expected, namely a higher biohydrogenation when a higher amount of FFA is present. This merits further investigation in relation to strategies to activate PPO toward the embedding of lipids in phenol protein complexes
The Alloy Theoretic Automated Toolkit: A User Guide
Although the formalism that allows the calculation of alloy thermodynamic
properties from first-principles has been known for decades, its practical
implementation has so far remained a tedious process. The Alloy Theoretic
Automated Toolkit (ATAT) drastically simplifies this procedure by implementing
decision rules based on formal statistical analysis that frees the researchers
from a constant monitoring during the calculation process and automatically
"glues" together the input and the output of various codes, in order to provide
a high-level interface to the calculation of alloy thermodynamic properties
from first-principles. ATAT implements the Structure Inversion Method (SIM),
also known as the Connolly-Williams method, in combination with
semi-grand-canonical Monte Carlo simulations. In order to make this powerful
toolkit available to the wide community of researchers who could benefit from
it, this article present a concise user guide outlining the steps required to
obtain thermodynamic information from ab initio calculations.Comment: 15 pages, 4 figure
- …