40 research outputs found
Seasonal variation of anti-PD-1 outcome in melanoma—Results from a Dutch patient cohort
Despite the improved survival rates of patients with advanced stage melanoma since the introduction of ICIs, many patients do not have (long-term) benefit from these treatments. There is evidence that the exposome, an accumulation of host-extrinsic factors including environmental influences, could impact ICI response. Recently, a survival benefit was observed in patients with BRAF wild-type melanoma living in Denmark who initiated immunotherapy in summer as compared to winter. As the Netherlands lies in close geographical proximity to Denmark and has comparable seasonal differences, a Dutch validation cohort was established using data from our nationwide melanoma registry. In this study, we did not observe a similar seasonal difference in overall survival and are therefore unable to confirm the Danish findings. Validation of either the Dutch or Danish findings in (combined) patient cohorts from other countries would be necessary to determine whether this host-extrinsic factor influences the response to ICI-treatment. Analysis and support of clinical decision makin
Seasonal variation of anti-PD-1 outcome in melanoma—Results from a Dutch patient cohort
Despite the improved survival rates of patients with advanced stage melanoma since the introduction of ICIs, many patients do not have (long-term) benefit from these treatments. There is evidence that the exposome, an accumulation of host-extrinsic factors including environmental influences, could impact ICI response. Recently, a survival benefit was observed in patients with BRAF wild-type melanoma living in Denmark who initiated immunotherapy in summer as compared to winter. As the Netherlands lies in close geographical proximity to Denmark and has comparable seasonal differences, a Dutch validation cohort was established using data from our nationwide melanoma registry. In this study, we did not observe a similar seasonal difference in overall survival and are therefore unable to confirm the Danish findings. Validation of either the Dutch or Danish findings in (combined) patient cohorts from other countries would be necessary to determine whether this host-extrinsic factor influences the response to ICI-treatment.</p
Seasonal variation of anti-PD-1 outcome in melanoma-Results from a Dutch patient cohort
Despite the improved survival rates of patients with advanced stage melanoma since the introduction of ICIs, many patients do not have (long-term) benefit from these treatments. There is evidence that the exposome, an accumulation of host-extrinsic factors including environmental influences, could impact ICI response. Recently, a survival benefit was observed in patients with BRAF wild-type melanoma living in Denmark who initiated immunotherapy in summer as compared to winter. As the Netherlands lies in close geographical proximity to Denmark and has comparable seasonal differences, a Dutch validation cohort was established using data from our nationwide melanoma registry. In this study, we did not observe a similar seasonal difference in overall survival and are therefore unable to confirm the Danish findings. Validation of either the Dutch or Danish findings in (combined) patient cohorts from other countries would be necessary to determine whether this host-extrinsic factor influences the response to ICI-treatment
Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change
Carbon dioxide concentrating mechanisms (also known as inorganic carbon concentrating mechanisms; both abbreviated as CCMs) presumably evolved under conditions of low CO2 availability. However, the timing of their origin is unclear since there are no sound estimates from molecular clocks, and even if there were, there are no proxies for the functioning of CCMs. Accordingly, we cannot use previous episodes of high CO2 (e.g. the Palaeocene-Eocene Thermal Maximum) to indicate how organisms with CCMs responded. Present and predicted environmental change in terms of increased CO2 and temperature are leading to increased CO2 and HCO3- and decreased CO32- and pH in surface seawater, as well as decreasing the depth of the upper mixed layer and increasing the degree of isolation of this layer with respect to nutrient flux from deeper waters. The outcome of these forcing factors is to increase the availability of inorganic carbon, photosynthetic active radiation (PAR) and ultraviolet B radiation (UVB) to aquatic photolithotrophs and to decrease the supply of the nutrients (combined) nitrogen and phosphorus and of any non-aeolian iron. The influence of these variations on CCM expression has been examined to varying degrees as acclimation by extant organisms. Increased PAR increases CCM expression in terms of CO2 affinity, while increased UVB has a range of effects in the organisms examined; little relevant information is available on increased temperature. Decreased combined nitrogen supply generally increases CO2 affinity, decreased iron availability increases CO2 affinity, and decreased phosphorus supply has varying effects on the organisms examined. There are few data sets showing interactions among the observed changes, and even less information on genetic (adaptation) changes in response to the forcing factors. In freshwaters, changes in phytoplankton species composition may alter with environmental change with consequences for frequency of species with or without CCMs. The information available permits less predictive power as to the effect of the forcing factors on CCM expression than for their overall effects on growth. CCMs are currently not part of models as to how global environmental change has altered, and is likely to further alter, algal and aquatic plant primary productivity