33 research outputs found

    Compression ignition of light naphtha and its multicomponent surrogate under partially premixed conditions

    No full text
    Light naphtha is the light distillate from crude oil and can be used in compression ignition (CI) engines; its low boiling point and octane rating (RON = 64.5) enable adequate premixing. This study investigates the combustion characteristics of light naphtha (LN) and its multicomponent surrogate under various start of injection (SOI) conditions. LN and a five-component surrogate for LN, comprised of 43% n-pentane, 12% n-heptane, 10% 2-methylhexane, 25% iso-pentane and 10% cyclo-pentane, has been tested in a single cylinder optical diesel engine. The transition in combustion homogeneity from CI combustion to homogenized charge compression ignition (HCCI) combustion was then compared between LN and its surrogate.The engine experimental results showed good agreement in combustion phasing, ignition delay, start of combustion, in-cylinder pressure and rate of heat release between LN and its surrogate. The low temperature reaction (LTR) phase exhibited by LN and its surrogate were comparable, while ignition delay was prolonged as SOI is advanced from CI to HCCI combustion. Combustion images for LN and its surrogate were nearly similar, showing equal behaviour in both fuels. The level of stratification estimated from the intensity of the images was comparable between LN and its surrogate at various SOI. Stratification analysis showed stratified combustion, and the decay of stratification was slower under PPC conditions than under CI conditions. Emissions such as nitrogen oxide (NOX), carbon monoxide (CO) and soot concentration were comparable for the real and surrogate fuels. Overall, this study demonstrates that the surrogate resembles its real fuel (LN) under the current set of engine test conditions

    Novel metalless chalcogen-based Janus layers:a density functional theory study

    No full text
    Abstract The electronic, thermodynamic, and optical properties of a new type of two-dimensional Janus layer (JL) consisting exclusively of chalcogens are investigated using first-principles calculations. The permutations on atomic sites provide increased stability due to the multi-valency of chalcogens, and a heavier central atom further stabilizes the layer due to the increased coordination number. The investigated JLs are indirect bandgap materials with a bandgap larger than 1.23 eV, making them suitable for photocatalytic activity. Different feasible chemical potentials are analyzed, and chalcogens’ poor limits are proposed to fabricate the JLs. Based on the comparison of the formation energy, the energetic profile of the JLs is identified as EfTeSeS < E fSSeTe < EfSeSTe, irrespective of the chemical potentials of chalcogen. Hence, TeSeS is more stable than the JL arrangements SSeTe and SeSTe. The flat bands around the Fermi energy level and the reduction in path length between the maximum of conduction and minimum of valence bands explain the magnitude of multiple peaks observed in the optical spectra of the JLs. These absorptions turn the studied JLs into potential candidates for water splitting. The optimized bandgap reveals that the band edges efficiently straddle the water redox potentials at different pH levels. In addition, the positive vibrational frequencies depict the stability of these layers. Because of the minimal formation energy requirement, higher density of states around the Fermi level, as well as enhanced optical absorption compared to other JL, TeSeS JLs may lead to enhanced performance in photovoltaic and photocatalytic applications. These results add new members to the JL family of pure chalcogens and pave the way toward novel materials for respective applications

    Combustion homogeneity and emission analysis during the transition from CI to HCCI for FACE I gasoline

    No full text
    Low temperature combustion concepts are studied recently to simultaneously reduce NOX and soot emissions. Optical studies are performed to study gasoline PPC in CI engines to investigate in-cylinder combustion and stratification. It is imperative to perform emission measurements and interpret the results with combustion images. In this work, we attempt to investigate this during the transition from CI to HCCI mode for FACE I gasoline (RON = 70) and its surrogate, PRF70. The experiments are performed in a single cylinder optical engine that runs at a speed of 1200 rpm. Considering the safety of engine, testing was done at lower IMEP (3 bar) and combustion is visualized using a high-speed camera through a window in the bottom of the bowl.From the engine experiments, it is clear that intake air temperature requirement is different at various combustion modes to maintain the same combustion phasing. While a fixed intake air temperature is required at HCCI condition, it varies at PPC and CI conditions between FACE I gasoline and PRF70. Three zones are identified 1) SOI = -180 to -80 CAD (aTDC) is HCCI zone 2) SOI = -40 to -20 CAD (aTDC) is PPC zone 3) After SOI = -15 CAD (aTDC) is CI zone. Combustion duration, ignition delay, start of combustion and CA90 (crank angle at which 90% of fuel burnt) are comparable between FACE I gasoline and PRF70. The combustion images show a prominent soot flame at CI condition, while only blue coloured premixed flames are visible at PPC condition for both the fuels. PRF70 seems to have a pronounced premixed effect when compared to FACE I gasoline at early injections, showing a decreased level of stratification. NOX emission and soot concentration decreases from CI condition and attains a constant zero value at HCCI condition for both FACE I gasoline and PRF70. CO and CO2 emissions matches between FACE I gasoline and PRF70 at PPC and CI condition, while CO emission is lower for PRF70 at HCCI condition

    Fuel effect on combustion stratification in partially premixed combustion

    No full text
    The literature study on PPC in optical engine reveals investigations on OH chemiluminescence and combustion stratification. So far, mostly PRF fuel is studied and it is worthwhile to examine the effect of fuel properties on PPC. Therefore, in this work, fuel having different octane rating and physical properties are selected and PPC is studied in an optical engine. The fuels considered in this study are diesel, heavy naphtha, light naphtha and their corresponding surrogates such as heptane, PRF50 and PRF65 respectively. Without EGR (Intake O2 = 21%), these fuels are tested at an engine speed of 1200 rpm, fuel injection pressure of 800 bar and pressure at TDC = 35 bar. SOI is changed from late to early fuel injection timings to study PPC and the shift in combustion regime from CI to PPC is explored for all fuels. An increased understanding on the effect of fuel octane number, physical properties and chemical composition on combustion and emission formation is obtained. High-speed images of the combustion process are analyzed for each and every fuel and in-cylinder phenomenon is associated with rate of heat release and in-cylinder pressure. Based on the intensity of the images, stratification analysis is performed.The results of the analysis show that CA50 decreases for all fuels from late to early SOI wherein PPC is realized. According to the reactivity of fuels, intake air temperature is increased to comply with the combustion phasing of baseline diesel. When studying the effect of physical properties of fuels, premixed effect and lean combustion are observed for PRF0 compared to diesel. The engine emissions of THC and CO are higher for PRF0 than diesel, while soot concentration is reduced. Diesel showed more stratified combustion than PRF0 despite having same RON due to the effect of physical properties. The effect of fuel octane number on PPC is suppressed due to temperature effect; intake air temperature is increased to 140°C and 90°C for PRF65 and PRF50. PRF0 lacked LTR phase and combustion was noted to be more premixed than PRF50 and PRF65 at SOI = -10 CAD (aTDC). The intensity of the combustion images is brighter for high RON fuels than PRF0 due to physical effects, while octane number effect is not realized due to higher intake air temperature. While THC and CO emissions decreased with the increase in RON, NOX emission increased due to increased intake air temperature. When comparing real fuels, soot concentration is lower for light naphtha when compared to diesel and heavy naphtha

    Combustion stratification for naphtha from CI combustion to PPC

    No full text
    This study demonstrated the change in combustion homogeneity from conventional diesel combustion via partially premixed combustion towards HCCI. Experiments are performed in an optical diesel engine at a speed of 1200 rpm with diesel fuel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. The cylinder pressure at TDC is maintained at 35 bar and a high-speed video of the combustion process is captured through optical piston. The high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, the combustion homogeneity is investigated by advancing to early fuel injection timings. For late fuel injection timings, a direct link between fuel injection timing and combustion phasing is noticed. At advanced fuel injection timings, the start of combustion is independent of fuel injection timing. The combustion homogeneity for the transition from CI via PPC towards HCCI is also investigated for various levels of dilution by displacing oxygen with nitrogen in the inlet. The start of combustion was retarded with the increase in dilution, while the mixture homogeneity is enhanced due to longer ignition delay. To compensate for the retarded combustion phasing with dilution, the inlet air temperature is increased. The experimental results show that the high speed image is initially blue and then turned yellow, indicating soot oxidation. The images are processed to generate the level of stratification based on the image intensity. This study shows better combustion homogeneity for early fuel injection timing and higher level of dilution and temperature in the inlet

    Combustion homogeneity and emission analysis during the transition from CI to HCCI for FACE I gasoline

    No full text
    Low temperature combustion concepts are studied recently to simultaneously reduce NOX and soot emissions. Optical studies are performed to study gasoline PPC in CI engines to investigate in-cylinder combustion and stratification. It is imperative to perform emission measurements and interpret the results with combustion images. In this work, we attempt to investigate this during the transition from CI to HCCI mode for FACE I gasoline (RON = 70) and its surrogate, PRF70. The experiments are performed in a single cylinder optical engine that runs at a speed of 1200 rpm. Considering the safety of engine, testing was done at lower IMEP (3 bar) and combustion is visualized using a high-speed camera through a window in the bottom of the bowl.From the engine experiments, it is clear that intake air temperature requirement is different at various combustion modes to maintain the same combustion phasing. While a fixed intake air temperature is required at HCCI condition, it varies at PPC and CI conditions between FACE I gasoline and PRF70. Three zones are identified 1) SOI = -180 to -80 CAD (aTDC) is HCCI zone 2) SOI = -40 to -20 CAD (aTDC) is PPC zone 3) After SOI = -15 CAD (aTDC) is CI zone. Combustion duration, ignition delay, start of combustion and CA90 (crank angle at which 90% of fuel burnt) are comparable between FACE I gasoline and PRF70. The combustion images show a prominent soot flame at CI condition, while only blue coloured premixed flames are visible at PPC condition for both the fuels. PRF70 seems to have a pronounced premixed effect when compared to FACE I gasoline at early injections, showing a decreased level of stratification. NOX emission and soot concentration decreases from CI condition and attains a constant zero value at HCCI condition for both FACE I gasoline and PRF70. CO and CO2 emissions matches between FACE I gasoline and PRF70 at PPC and CI condition, while CO emission is lower for PRF70 at HCCI condition.\u3cbr/\u3

    Effect of aromatics on combustion stratification and particulate emissions from low octane gasoline fuels in PPC and HCCI mode

    No full text
    The objective of this study was to investigate the effect of aromatic on combustion stratification and particulate emissions for PRF60. Experiments were performed in an optical CI engine at a speed of 1200 rpm for TPRF0 (100% v/v PRF60), TPRF20 (20% v/v toluene + 80% PRF60) and TPRF40 (40% v/v toluene + 60% PRF60). TPRF mixtures were prepared in such a way that the RON of all test blends was same (RON = 60). Single injection strategy with a fuel injection pressure of 800 bar was adopted for all test fuels. Start of injection (SOI) was changed from early to late fuel injection timings, representing various modes of combustion viz HCCI, PPC and CDC. High-speed video of the in-cylinder combustion process was captured and one-dimensional stratification analysis was performed from the intensity of images. Particle size, distribution and concentration were measured and linked with the in-cylinder combustion images. Results showed that combustion advanced from CDC to PPC and then attained a constant value in HCCI mode. In PPC and HCCI region, the soot mass concentration was significantly reduced as premixing was improved due to longer ignition delay. The particle number was lower for the late injection and becomes higher as the injection timing advanced to PPC and HCCI mode. While the soot particles were almost nuclear model with the size range of 5nm~17nm and as combustion transited from CDC via PPC to HCCI, the particle size became larger. For TPRF blends, the increased intake air temperature was required to maintain same combustion phasing as that of PRF60. With the addition of toluene to PRF60, the soot concentration increased, which was in-line with the increased intensity (yellow) of combustion images. The degree of stratification was higher for TPRF20 and TPRF40 when compared to PRF60

    Novel noncoding RNA from human Y distal heterochromatic block (Yq12) generates testis-specific chimeric CDC2L2

    No full text
    The human Y chromosome, because it is enriched in repetitive DNA, has been very intractable to genetic and molecular analyses. There is no previous evidence for developmental stage- and testis-specific transcription from the male-specific region of the Y (MSY). Here, we present evidence for the first time for a developmental stage- and testis-specific transcription from MSY distal heterochromatic block. We isolated two novel RNAs, which localize to Yq12 in multiple copies, show testis-specific expression, and lack active X-homologs. Experimental evidence shows that one of the above Yq12 noncoding RNAs (ncRNAs) trans-splices with CDC2L2 mRNA from chromosome 1p36.3 locus to generate a testis-specific chimeric β sv13 isoform. This 67-nt 5′UTR provided by the Yq12 transcript contains within it a Y box protein-binding CCAAT motif, indicating translational regulation of the β sv13 isoform in testis. This is also the first report of trans-splicing between a Y chromosomal and an autosomal transcript

    Fuel effect on combustion stratification in partially premixed combustion

    No full text
    The literature study on PPC in optical engine reveals investigations on OH chemiluminescence and combustion stratification. So far, mostly PRF fuel is studied and it is worthwhile to examine the effect of fuel properties on PPC. Therefore, in this work, fuel having different octane rating and physical properties are selected and PPC is studied in an optical engine. The fuels considered in this study are diesel, heavy naphtha, light naphtha and their corresponding surrogates such as heptane, PRF50 and PRF65 respectively. Without EGR (Intake O2 = 21%), these fuels are tested at an engine speed of 1200 rpm, fuel injection pressure of 800 bar and pressure at TDC = 35 bar. SOI is changed from late to early fuel injection timings to study PPC and the shift in combustion regime from CI to PPC is explored for all fuels. An increased understanding on the effect of fuel octane number, physical properties and chemical composition on combustion and emission formation is obtained. High-speed images of the combustion process are analyzed for each and every fuel and in-cylinder phenomenon is associated with rate of heat release and in-cylinder pressure. Based on the intensity of the images, stratification analysis is performed.The results of the analysis show that CA50 decreases for all fuels from late to early SOI wherein PPC is realized. According to the reactivity of fuels, intake air temperature is increased to comply with the combustion phasing of baseline diesel. When studying the effect of physical properties of fuels, premixed effect and lean combustion are observed for PRF0 compared to diesel. The engine emissions of THC and CO are higher for PRF0 than diesel, while soot concentration is reduced. Diesel showed more stratified combustion than PRF0 despite having same RON due to the effect of physical properties. The effect of fuel octane number on PPC is suppressed due to temperature effect; intake air temperature is increased to 140°C and 90°C for PRF65 and PRF50. PRF0 lacked LTR phase and combustion was noted to be more premixed than PRF50 and PRF65 at SOI = -10 CAD (aTDC). The intensity of the combustion images is brighter for high RON fuels than PRF0 due to physical effects, while octane number effect is not realized due to higher intake air temperature. While THC and CO emissions decreased with the increase in RON, NOX emission increased due to increased intake air temperature. When comparing real fuels, soot concentration is lower for light naphtha when compared to diesel and heavy naphtha.\u3cbr/\u3

    Analysis of transition from HCCI to CI via PPC with low octane gasoline fuels using optical diagnostics and soot particle analysis

    No full text
    In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NOX) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release. Soot mass concentration was measured and linked with the combustion stratification and the integrated red channel intensity of the high-speed images for the soot emissions. The nucleation nanoscale particle number and the particle size distribution were sampled to understand the effect of combustion mode switch.\u3cbr/\u3
    corecore