70 research outputs found

    Galenic Preparations of Therapeutic Cannabis sativa Differ in Cannabinoids Concentration: A Quantitative Analysis of Variability and Possible Clinical Implications

    Get PDF
    Introduction: Magistral preparations of therapeutic cannabis are extracted from standardized products imported from Holland or from the Florence Military Pharmaceutical Chemical Works, but extraction protocols differ among galenic laboratories. This study assessed the inter-laboratory variability in concentrations of cannabidiol (CBD), cannabinol (CBN), tetrahydrocannabinol (THC), and tetrahydrocannabinolic acid (THCA) among different magistral oil preparations.Methods: 219 samples of Bediol, Bedrobinol, Bedrolite or FM-2 70 or 100 mg/ml in oil were collected from 3 laboratories. Concentrations of CBD, CBN, THC, and THCA were quantified by high-pressure liquid chromatography; inter-laboratories variability was assessed using the Kruskal–Wallis test.Results: A significant variability in CBD and THC concentrations was found for Bediol 70 mg/ml samples from 2 laboratories [for CBD: median 5.4 (range 4.8–6.6) vs. 6.1 (4.9–7.2) mg/ml, p = 0.033; for THC: 3.6 (3.1–3.9) vs. 4.0 (2.6–5.1) mg/ml, p = 0.020]. As for Bediol 100 mg/ml, a significant variability emerged in THC concentrations among the three considered laboratories [5.7 (-) vs. 4.2 (1.5–4.8) vs. 5.2 (4.2–6.9), p = 0.030]. No significant inter-laboratory variability emerged for Bedrocan and Bedrolite. Concentrations of CBD, CBN, and THC were <LOQ in all Bedrocan samples, and CBN and THCA were <LOQ in all Bedrolite samples. As for FM-2, a significant inter-laboratories variability was found for CBD concentrations.Conclusion: Quantitative variability of cannabinoids in magistral preparations might impact on the efficacy and safety of therapeutic cannabis. A standardized protocol is needed to guarantee a homogeneous product and patients’ therapeutic continuity

    Endophytic and rhizospheric bacterial communities isolated from the medicinal plants Echinacea purpurea and Echinacea angustifolia

    Get PDF
    In this work we analyzed the composition and structure of cultivable bacterial communities isolated from the stem/leaf and root compartments of two medicinal plants, Echinacea purpurea (L.) Moench and Echinacea angustifolia (DC.) Hell, grown in the same soil, as well as the bacterial community from their rhizospheric soils. Molecular PCR-based techniques were applied to cultivable bacteria isolated from the three compartments of the two plants. The results showed that the two plants and their respective compartments were characterized by different communities, indicating a low degree of strain sharing and a strong selective pressure within plant tissues. Pseudomonas was the most highly represented genus, together with Actinobacteria and Bacillus spp. The presence of distinct bacterial communities in different plant species and among compartments of the same plant species could account for the differences in the medicinal properties of the two plants. [Int Microbiol 2014; 17(3):165-174]Keywords: Echinacea purpurea · Echinacea angustifolia · rhizosphere · medicinal plants · endophyte

    The cypsela (achene) of Echinacea purpurea as a diffusion unit of a community of microorganisms

    Get PDF
    Echinacea purpurea is a plant cultivated worldwide for its pharmaceutical properties, mainly related to the stimulation of the immune system in the treatment of respiratory infections. The cypselas (fruits) of E. purpurea were examined in order to investigate the presence, localization and potential function(s) of endophytic microorganisms. Electron and confocal microscopy observations showed that three different components of microorganisms were associated to cypselas of E. purpurea: (i) one endocellular bacterial component in the cotyledons, enclosed within the host membrane; (ii) another more generic bacterial component adhering to the external side of the perianth; and (iii) a fungal component inside the porous layer of the perianth, the woody and porous modified residual of the flower, in the form of numerous hyphae able to cross the wall between adjacent cells. Isolated bacteria were affiliated to the genera Paenibacillus, Pantoea, and Sanguibacter. Plate tests showed a general resistance to six different antibiotics and also to an antimicrobial-producing Rheinheimera sp. test strain. Finally, microbiome-deprived E. purpurea seeds showed a reduced ability to germinate, suggesting an active role of the microbiome in the plant vitality. Our results suggest that the endophytic bacterial community of E. purpurea, previously found in roots and stem/leaves, might be already carried at the seed stage, hosted by the cotyledons. A further microbial fungal component is transported together with the seed in the perianth of the cypsela, whose remarkable structure may be considered as an adaptation for fungal transportation, and could influence the capability of the seed to germinate in the soil

    Draft Genome Sequence of Pseudomonas sp. EpS/L25, Isolated from the Medicinal Plant Echinacea purpurea and Able To Synthesize Antimicrobial Compounds

    Get PDF
    We announce here the draft genome sequence of Pseudomonas sp. strain EpS/L25, isolated from the stem/leaves of the medicinal plant Echinacea purpurea This genome will allow for comparative genomics in order to identify genes associated with the production of bioactive compounds and antibiotic resistance
    • …
    corecore