264 research outputs found

    Prevalence of antibodies against Neospora caninum in dogs from urban areas in Central Poland

    Get PDF
    Neospora caninum is a protozoan parasite which causes abortion in cattle as well as reproduction problems and neurological disorders in dogs. To assess the prevalence of the parasite in urban dogs in the Mazovian Voivodeship, Central Poland, serum samples from 257 dogs were analyzed for the presence of specific IgG antibodies. The examined dogs visited three private veterinary clinics located in Warsaw due to control tests, vaccinations, or other reasons not directly connected with neosporosis. Using ELISA and Western blot, antibodies against the parasite were detected in 56 out of 257 dogs, giving a prevalence of 21.7%. A greater prevalence was observed in female dogs than in males, 28% and 17.3%, respectively, and the differences were statistically significant (p < 0.05). There were no significant differences in seroprevalence of Neospora infection within the age groups (p > 0.05). This study indicates the presence of N. caninum in the Mazovian Voivodeship, in dogs which live in urban areas and exposure of these dogs to the parasite. The fact that seropositive dogs had no contact with cattle confirms the important role of dogs in the parasite’s epidemiology

    A Search for Photons with Energies above 2 × 1017eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory

    Get PDF
    Ultra-high-energy photons with energies exceeding 1017 eV offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the 1015 eV range further motivate searches for even higher-energy photons. In this paper, we present a search for photons with energies exceeding 2 × 1017 eV using about 5.5 yr of hybrid data from the low-energy extensions of the Pierre Auger Observatory. The upper limits on the integral photon flux derived here are the most stringent ones to date in the energy region between 1017 and 1018 eV

    A Search for Photons with Energies Above 2 × 1017^{17} eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory

    Get PDF
    Ultra-high-energy photons with energies exceeding 1017^{17} eV offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the 1015^{15} eV range further motivate searches for even higher-energy photons. In this paper, we present a search for photons with energies exceeding 2 × 1017^{17} eV using about 5.5 yr of hybrid data from the low-energy extensions of the Pierre Auger Observatory. The upper limits on the integral photon flux derived here are the most stringent ones to date in the energy region between 1017^{17} and 1018^{18} eV

    Searches for Ultra-High-Energy Photons at the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory, being the largest air-shower experiment in the world, offers an unprecedented exposure to neutral particles at the highest energies. Since the start of data taking more than 18 years ago, various searches for ultra-high-energy (UHE, E1017eVE\gtrsim10^{17}\,\text{eV}) photons have been performed: either for a diffuse flux of UHE photons, for point sources of UHE photons or for UHE photons associated with transient events like gravitational wave events. In the present paper, we summarize these searches and review the current results obtained using the wealth of data collected by the Pierre Auger Observatory.Comment: Review article accepted for publication in Universe (special issue on ultra-high energy photons

    The Pierre Auger Observatory Open Data

    Full text link
    The Pierre Auger Collaboration has embraced the concept of open access to their research data since its foundation, with the aim of giving access to the widest possible community. A gradual process of release began as early as 2007 when 1% of the cosmic-ray data was made public, along with 100% of the space-weather information. In February 2021, a portal was released containing 10% of cosmic-ray data collected from 2004 to 2018, during Phase I of the Observatory. The Portal included detailed documentation about the detection and reconstruction procedures, analysis codes that can be easily used and modified and, additionally, visualization tools. Since then the Portal has been updated and extended. In 2023, a catalog of the 100 highest-energy cosmic-ray events examined in depth has been included. A specific section dedicated to educational use has been developed with the expectation that these data will be explored by a wide and diverse community including professional and citizen-scientists, and used for educational and outreach initiatives. This paper describes the context, the spirit and the technical implementation of the release of data by the largest cosmic-ray detector ever built, and anticipates its future developments.Comment: 19 pages, 8 figure

    Radio Measurements of the Depth of Air-Shower Maximum at the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA), part of the Pierre Auger Observatory, is currently the largest array of radio antenna stations deployed for the detection of cosmic rays, spanning an area of 1717 km2^2 with 153 radio stations. It detects the radio emission of extensive air showers produced by cosmic rays in the 308030-80 MHz band. Here, we report the AERA measurements of the depth of the shower maximum (XmaxX_\text{max}), a probe for mass composition, at cosmic-ray energies between 1017.510^{17.5} to 1018.810^{18.8} eV, which show agreement with earlier measurements with the fluorescence technique at the Pierre Auger Observatory. We show advancements in the method for radio XmaxX_\text{max} reconstruction by comparison to dedicated sets of CORSIKA/CoREAS air-shower simulations, including steps of reconstruction-bias identification and correction, which is of particular importance for irregular or sparse radio arrays. Using the largest set of radio air-shower measurements to date, we show the radio XmaxX_\text{max} resolution as a function of energy, reaching a resolution better than 1515 g cm2^{-2} at the highest energies, demonstrating that radio XmaxX_\text{max} measurements are competitive with the established high-precision fluorescence technique. In addition, we developed a procedure for performing an extensive data-driven study of systematic uncertainties, including the effects of acceptance bias, reconstruction bias, and the investigation of possible residual biases. These results have been cross-checked with air showers measured independently with both the radio and fluorescence techniques, a setup unique to the Pierre Auger Observatory.Comment: Submitted to Phys. Rev.

    Cosmological implications of photon-flux upper limits at ultra-high energies in scenarios of Planckian-interacting massive particles for dark matter

    Full text link
    We present a thorough search for signatures that would be suggestive of super-heavy XX particles decaying in the Galactic halo, in the data of the Pierre Auger Observatory. From the lack of signal, we derive upper limits for different energy thresholds above 108{\gtrsim}10^8\,GeV on the expected secondary by-product fluxes from XX-particle decay. Assuming that the energy density of these super-heavy particles matches that of dark matter observed today, we translate the upper bounds on the particle fluxes into tight constraints on the couplings governing the decay process as a function of the particle mass. We show that instanton-induced decay processes allow us to derive a bound on the reduced coupling constant of gauge interactions in the dark sector: \alpha_X \alt 0.09, for 10^{9} \alt M_X/\text{GeV} < 10^{19}. This upper limit on αX\alpha_X is complementary to the non-observation of tensor modes in the cosmic microwave background in the context of Planckian-interacting massive particles for dark matter produced during the reheating epoch. Viable regions for this scenario to explain dark matter are delineated in several planes of the multidimensional parameter space that involves, in addition to MXM_X and αX\alpha_X, the Hubble rate at the end of inflation, the reheating efficiency, and the non-minimal coupling of the Higgs with curvature.Comment: 15 pages, 8 figures, Accompanying paper of arXiv:2203.0885

    Constraining Lorentz Invariance Violation using the muon content of extensive air showers measured at the Pierre Auger Observatory

    Get PDF
    Lorentz Invariance (LI) implies that the space-time structure is the same for all observers. On the other hand, various quantum gravity theories suggest that it may be violated when approaching the Planck scale. At extreme energies, like those available in the collision of Ultra-High Energy Cosmic Rays (UHECRs) with atmosphere nuclei, one should also expect a change in the interactions due to Lorentz Invariance Violation (LIV). In this work, the effects of LIV on the development of Extensive Air Showers (EAS) have been considered. After having introduced LIV as a perturbation term in the single-particle dispersion relation, a library of simulated showers with different energies, primary particles and LIV strengths has been produced. Possible LIV has been studied using the muon content of air showers measured at the Pierre Auger Observatory. Limits on LIV parameters have been derived from a comparison between the Monte Carlo expectations and muon fluctuation measurements from the Pierre Auger Observatory

    A search for ultra-high-energy photons at the Pierre Auger Observatory exploiting air-shower Universality

    Get PDF
    The Pierre Auger Observatory is the most sensitive detector to primary photons with energies above ∼ 0.2 EeV. It measures extensive air showers using a hybrid technique that combines a fluorescence detector (FD) with a ground array of particle detectors (SD). The signatures of a photon-induced air shower are a larger atmospheric depth at the shower maximum (Xmax) and a steeper lateral distribution function, along with a lower number of muons with respect to the bulk of hadron-induced background. Using observables measured by the FD and SD, three photon searches in different energy bands are performed. In particular, between threshold energies of 1–10 EeV, a new analysis technique has been developed by combining the FD-based measurement of Xmax with the SD signal through a parameter related to its muon content, derived from the universality of the air showers. This technique has led to a better photon/hadron separation and, consequently, to a higher search sensitivity, resulting in a tighter upper limit than before. The outcome of this new analysis is presented here, along with previous results in the energy ranges below 1 EeV and above 10 EeV. From the data collected by the Pierre Auger Observatory in about 15 years of operation, the most stringent constraints on the fraction of photons in the cosmic flux are set over almost three decades in energy
    corecore