2,684 research outputs found
Job Satisfaction Among Faculty Members at CCCU Institutions
The purpose of this research study was to determine whether any significant differences existed between generational cohorts, gender and employment status, and reported levels of job satisfaction among faculty at institutions within the Council of Christian Colleges and Universities (CCCU). This study aimed to influence institutional objectives and values to make any necessary adjustments in the attraction and retention of faculty members. The Academic Setting Evaluation Questionnaire (ASEQ) was used to survey participants. The data suggested factors that impact job satisfaction among faculty members within CCCU institutions are not those related to generational cohort, gender, or employment status. This study produced findings contradictory to previous studies within higher education
Unitary groups acting on Grassmannians associated with a quadratic extension of fields.
Let (V,H) be an anisotropic Hermitian space of finite dimension over the algebraic closure of a real closed field K. We determine the orbits of the group of isometries of (V,H) in the set of the K-subspaces of V
Severe Lumbar Disability Is Associated With Decreased Psoas Cross-Sectional Area in Degenerative Spondylolisthesis
Study Design: Retrospective cohort. Objectives: Alterations in lumbar paraspinal muscle cross-sectional area (CSA) may correlate with lumbar pathology. The purpose of this study was to compare paraspinal CSA in patients with degenerative spondylolisthesis and severe lumbar disability to those with mild or moderate lumbar disability, as determined by the Oswestry Disability Index (ODI). Methods: We retrospectively reviewed the medical records of 101 patients undergoing lumbar fusion for degenerative spondylolisthesis. Patients were divided into ODI score ≤40 (mild/moderate disability, MMD) and ODI score \u3e40 (severe disability, SD) groups. The total CSA of the psoas and paraspinal muscles were measured on preoperative magnetic resonance imaging (MRI). Results: There were 37 patients in the SD group and 64 in the MMD group. Average age and body mass index were similar between groups. For the paraspinal muscles, we were unable to demonstrate any significant differences in total CSA between the groups. Psoas muscle CSA was significantly decreased in the SD group compared with the MMD group (1010.08 vs 1178.6 mm2, P =.041). Multivariate analysis found that psoas CSA in the upper quartile was significantly protective against severe disability (P =.013). Conclusions: We found that patients with severe lumbar disability had no significant differences in posterior lumbar paraspinal CSA when compared with those with mild/moderate disability. However, severely disabled patients had significantly decreased psoas CSA, and larger psoas CSA was strongly protective against severe disability, suggestive of a potential association with psoas atrophy and worsening severity of lumbar pathology. © The Author(s) 2018
Thermal stability and aggregation of sulfolobus solfataricus b-glycosidase are dependent upon the N-e-methylation of specific lysyl residues: critical role of in vivo post-translational modifications.
Methylation in vivo is a post-translational modification observed in several organisms belonging to eucarya, bacteria, and archaea. Although important implications of this modification have been demonstrated in several eucaryotes, its biological role in hyperthermophilic archaea is far from being understood. The aim of this work is to clarify some effects of methylation on the properties of β-glycosidase from Sulfolobus solfataricus, by a structural comparison between the native, methylated protein and its unmethylated counterpart, recombinantly expressed in Escherichia coli. Analysis by Fourier transform infrared spectroscopy indicated similar secondary structure contents for the two forms of the protein. However, the study of temperature perturbation by Fourier transform infrared spectroscopy and turbidimetry evidenced denaturation and aggregation events more pronounced in recombinant than in native β-glycosidase. Red Nile fluorescence analysis revealed significant differences of surface hydrophobicity between the two forms of the protein. Unlike the native enzyme, which dissociated into SDS-resistant dimers upon exposure to the detergent, the recombinant enzyme partially dissociated into monomers. By electrospray mapping, the methylation sites of the native protein were identified. A computational analysis of β-glycosidase three-dimensional structure and comparisons with other proteins from S. solfataricus revealed analogies in the localization of methylation sites in terms of secondary structural elements and overall topology. These observations suggest a role for the methylation of lysyl residues, located in selected domains, in the thermal stabilization of β-glycosidase from S. solfataricu
Does nonlinear metrology offer improved resolution? Answers from quantum information theory
A number of authors have suggested that nonlinear interactions can enhance
resolution of phase shifts beyond the usual Heisenberg scaling of 1/n, where n
is a measure of resources such as the number of subsystems of the probe state
or the mean photon number of the probe state. These suggestions are based on
calculations of `local precision' for particular nonlinear schemes. However, we
show that there is no simple connection between the local precision and the
average estimation error for these schemes, leading to a scaling puzzle. This
puzzle is partially resolved by a careful analysis of iterative implementations
of the suggested nonlinear schemes. However, it is shown that the suggested
nonlinear schemes are still limited to an exponential scaling in \sqrt{n}.
(This scaling may be compared to the exponential scaling in n which is
achievable if multiple passes are allowed, even for linear schemes.) The
question of whether nonlinear schemes may have a scaling advantage in the
presence of loss is left open.
Our results are based on a new bound for average estimation error that
depends on (i) an entropic measure of the degree to which the probe state can
encode a reference phase value, called the G-asymmetry, and (ii) any prior
information about the phase shift. This bound is asymptotically stronger than
bounds based on the variance of the phase shift generator. The G-asymmetry is
also shown to directly bound the average information gained per estimate. Our
results hold for any prior distribution of the shift parameter, and generalise
to estimates of any shift generated by an operator with discrete eigenvalues.Comment: 8 page
Experimental demonstration of quantum source coding
We report an experimental demonstration of Schumacher's quantum noiseless
coding theorem. Our experiment employs a sequence of single photons each of
which represents three qubits. We initially prepare each photon in one of a set
of 8 non-orthogonal codeword states corresponding to the value of a block of
three binary letters. We use quantum coding to compress this quantum data into
a two-qubit quantum channel and then uncompress the two-qubit channel to
restore the original data with a fidelity approaching the theoretical limit.Comment: 5 pages, 4 figure
Affine arithmetic-based methodology for energy hub operation-scheduling in the presence of data uncertainty
In this study, the role of self-validated computing for solving the energy hub-scheduling problem in the presence of multiple and heterogeneous sources of data uncertainties is explored and a new solution paradigm based on affine arithmetic is conceptualised. The benefits deriving from the application of this methodology are analysed in details, and several numerical results are presented and discussed
- …