452 research outputs found

    Genetics of diabetes-associated microvascular complications

    Get PDF
    Diabetes is associated with excess morbidity and mortality due to both micro- and macrovascular complications, as well as a range of non-classical comorbidities. Diabetes-associated microvascular complications are those considered most closely related to hyperglycaemia in a causal manner. However, some individuals with hyperglycaemia (even those with severe hyperglycaemia) do not develop microvascular diseases, which, together with evidence of co-occurrence of microvascular diseases in families, suggests a role for genetics. While genome-wide association studies (GWASs) produced firm evidence of multiple genetic variants underlying differential susceptibility to type 1 and type 2 diabetes, genetic determinants of microvascular complications are mostly suggestive. Identified susceptibility variants of diabetic kidney disease (DKD) in type 2 diabetes mirror variants underlying chronic kidney disease (CKD) in individuals without diabetes. As for retinopathy and neuropathy, reported risk variants currently lack large-scale replication. The reported associations between type 2 diabetes risk variants and microvascular complications may be explained by hyperglycaemia. More extensive phenotyping, along with adjustments for unmeasured confounding, including both early (fetal) and late-life (hyperglycaemia, hypertension, etc.) environmental factors, are urgently needed to understand the genetics of microvascular complications. Finally, genetic variants associated with reduced glycolysis, mitochondrial dysfunction and DNA damage and sustained cell regeneration may protect against microvascular complications, illustrating the utility of studies in individuals who have escaped these complications.publishedVersio

    Skeletal muscle structural lipids improve during weight-maintenance after a very low calorie dietary intervention

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective was to investigate in a group of obese subjects the course in skeletal muscle phospholipid (SMPL) fatty acids (FA) during a 24-weeks weight maintenance program, which was preceded by a successful very low calorie dietary intervention (VLCD). Special focus was addressed to SMPL omega-3 FA, which is a lipid entity that influences insulin action.</p> <p>Methods</p> <p>Nine obese subjects (BMI = 35.7 ± 1.0 kg/m<sup>2</sup>), who had completed an 8 weeks VLCD (weight-loss = -9.7 ± 1.6 kg, P < 0.001), had obtained skeletal muscle biopsies (vastus lateralis) before and after a dietician-guided 24-weeks weight-maintenance program (-1.2 ± 1.5 kg, P = ns). SMPL FA composition was determined by gas liquid chromatography. During the preceding VLCD, insulin sensitivity (HOMA-IR) and glycemic control (HbA1c) improved but no change in SMPL omega-3 FA was observed. During the weight-maintenance program five subjects received the pancreas lipase inhibitor Orlistat 120 mg t.i.d. versus placebo.</p> <p>Results</p> <p>HOMA-IR and HbA1c stabilized and SMPL total omega-3 FA, docosahexaenoic acid and ratio of n-3/n-6 polyunsaturated FA increased by 24% (P < 0.01), 35% (P < 0.02) and 26% (P < 0.01), respectively, whereas saturated and monounsaturated FA did not change. Plasma total-cholesterol and LDL-cholesterol, which decreased during the VLCD, reverted to pre-VLCD levels (P < 0.01). Orlistat therapy was associated with weight-loss (P < 0.05), trends for better glycemic control (P = 0.15) and greater increase in SMPL docosahexaenoic acid (P = 0.12) but similar reversal of plasma cholesterols compared to placebo.</p> <p>Conclusion</p> <p>The data are consistent with the notion that greater SMPL omega-3 FA obtained during a weight-maintenance program may play a role for preserving insulin sensitivity and glycemic control being generated during a preceding VLCD.</p

    Natural History of Insulin Sensitivity and Insulin Secretion in the Progression From Normal Glucose Tolerance to Impaired Fasting Glycemia and Impaired Glucose Tolerance: The Inter99 Study

    Get PDF
    OBJECTIVE—The aim of this study was to describe the natural history of insulin secretion and insulin sensitivity in the development of isolated impaired fasting glycemia (i-IFG), isolated impaired glucose tolerance (i-IGT), and combined IFG/IGT

    Plasma amino acid levels are elevated in young, healthy low birth weight men exposed to short-term high-fat overfeeding

    Get PDF
    Low birth weight (LBW) individuals exhibit a disproportionately increased, incomplete fatty acid oxidation and a decreased glucose oxidation, compared with normal birth weight (NBW) individuals, and furthermore have an increased risk of developing insulin resistance and type 2 diabetes. We hypothesized that changes in amino acid metabolism may occur parallel to alterations in fatty acid and glucose oxidation, and could contribute to insulin resistance. Therefore, we measured fasting plasma levels of 15 individual or pools of amino acids in 18 LBW and 25 NBW men after an isocaloric control diet and after a 5‐day high‐fat, high‐calorie diet. We demonstrated that LBW and NBW men increased plasma alanine levels and decreased valine and leucine/isoleucine levels in response to overfeeding. Also, LBW men had higher alanine, proline, methionine, citrulline, and total amino acid levels after overfeeding compared with NBW men. Alanine and total amino acid levels tended to be negatively associated with the insulin‐stimulated glucose uptake after overfeeding. Therefore, the higher amino acid levels in LBW men could be a consequence of their reduction in skeletal muscle insulin sensitivity due to overfeeding with a possible increased skeletal muscle proteolysis and/or could potentially contribute to an impaired insulin sensitivity. Furthermore, the alanine level was negatively associated with the plasma acetylcarnitine level and positively associated with the hepatic glucose production after overfeeding. Thus, the higher alanine level in LBW men could be accompanied by an increased anaplerotic formation of oxaloacetate and thereby an enhanced tricarboxylic acid cycle activity and as well an increased gluconeogenesis
    corecore