48 research outputs found

    Effect of IGHV Gene Mutation Status and BCR Structure Stereotypy on Effectiveness of BR Regimen in First-Line Therapy of Chronic Lymphocytic Leukemia

    Get PDF
    Background & Aims. The IGHV gene mutation status is a constant biological feature of tumor cells in chronic lymphocytic leukemia (CLL). This parameter is an important predictor of the efficacy of immunochemotherapy. It was included into the CLL international prognostic index CLL-IPI developed recently. The aim is to evaluate the prognostic significance of the BR regimen in patients with different variants of the B-cell receptor (BCR) structure. Methods. The study examined immediate and delayed treatment outcomes for 183 CLL patients included in a Russian, prospective, observational BEN-001 trial (NCT02110394). The median age was 61 years (range: 35–79); 53/179 (29.6 %) patients were older than 65; and 14/179 (7.8 %) patients were older than 75. Prevalence of males (110/179, 61.5 %) in the male/female ratio (1.6:1.0) was observed. Most patients had advanced disease: Binet B 116/173 (67 %) or Binet C 38/173 (22 %). The patients received the first-line therapy according to the BR regimen at standard doses in 36 hematological institutions in the Russian Federation over the period from 2012 until 2015. The genome DNA isolated from mononuclear leukocytes in the peripheral blood was used to assess the mutation status of the IGHV-genes. Results. The study demonstrated that unmutated CLL (≥ 98 % of homology to germline gene) is associated with worsening of the event-free and overall survival rates most of all; at that, the complete remission rate and the MRD-free survival rate were the same. Conclusion. It is reasonable to analyze the IGHV mutation status in all patients prescribed with the BR regimen as the first-line therapy

    Role of Superficial CD200 Marker in Differential Diagnosis of Malignant B-Cell Lymphoproliferative Diseases

    Get PDF
    Background & Aims. Flow cytometry is successfully used for diagnosis of malignant lymphoproliferative disorders. However, there are atypical cases that are difficult to interpret; thus, new markers relevant for the differential diagnosis are to be searched for. The aim is to analyze CD200 expression in patients with B-cell lymphoproliferative disorders. Materials & Methods. 187 patients with chronic lymphocytic leukemia (CLL), 14 patients with mantle cell lymphoma (MCL), 9 patients with marginal zone lymphoma (MZL), and 5 patients with hairy cell leukemia (HCL) were enrolled in the study. Neoplasm was not confirmed in 12 subjects. The patients underwent the following tests: CBC, immunophenotyping of peripheral blood or bone marrow lymphocytes, and a cytogenetic test. In some cases, an additional immunohistochemical test of bone marrow trepanobiopsy or lymph node biopsy samples was required. Results. In all cases of CLL and HCL, the CD200 expression was positive; mean fluorescence intensity was higher in these cases as compared to other groups. Negative expression of CD200 prevailed in MCL patients; however, at the same time 2 cases of intermediate and positive expression were reported, both showing moderate fluorescence intensity values. CD200 expression was heterogeneous in MZL patients. Conclusion. The CD200 negative expression excludes typical HCL and CLL. Additional cytogenetic and immunnohistoсhemical tests should be performed in such cases to verify the diagnosis, first of all, MCL or MZL

    Minimal Residual Disease and IGHV-Genes Mutational Status as the Main Predictors of Response to Bendamustine-Rituximab Therapy in Previously Untreated Chronic Lymphocytic Leukemia

    Get PDF
    Background. In patients with chronic lymphocytic leukemia (CLL) the eradication of minimal residual disease (MRD) is a prognostic factor of overall survival (OS) and progression-free survival (PFS). IGHV mutational status has also independent prognostic value. Aim. To analyse the impact of mutational status and MRD eradication in CLL patients after first-line standard BR (bendamustine + rituximab) immunochemotherapy. Materials & Methods. The prospective study included patients with immunophenotypically confirmed CLL who had not previously received anticancer therapy. All patients were treated by BR combination from 2012 to 2015. MRD level was determined in 109 patients after completing the 3rd and the 6th treatment courses. IGHV mutational status data were available for 98 patients. IGHV mutational status was evaluated in accordance with ERIC recommendations. MRD was assessed by standardized method of 4-color flow cytometry. Results. MRD negativity was achieved in 37 (34 %) out of 109 patients. MRD eradication correlated with the best PFS (p = 0.04). IGHV mutational status had a statistically significant impact on PFS (p = 0.02). In patients with MRD-negative response and IGHV mutation no unfavorable events occurred during the period of monitoring. Conversely, PFS rates in MRD-negative patients having no IGHV mutation and in MRD-positive patients with mutation were significantly worse. MRD eradication resulted in statistically significant improvement of PFS rates after completing 3 treatment courses, compared with the cases with MRD persistence regardless of residual malignant clone level (p = 0.01). Conclusion. BR therapy as first-line treatment statistically improved PFS in patients who achieved MRD-negative remission after completing the 3rd treatment course. PFS was significantly higher in MRD-negative patients with IGHV mutation after 6 treatment courses. MRD negativity resulting from 6 BR therapies in patients having no IGHV mutation was not accompanied by PFS improvement. It follows that by itself MRD negativity cannot be considered to be a universal prognostic factor

    Optical Magnetometry

    Get PDF
    Some of the most sensitive methods of measuring magnetic fields utilize interactions of resonant light with atomic vapor. Recent developments in this vibrant field are improving magnetometers in many traditional areas such as measurement of geomagnetic anomalies and magnetic fields in space, and are opening the door to new ones, including, dynamical measurements of bio-magnetic fields, detection of nuclear magnetic resonance (NMR), magnetic-resonance imaging (MRI), inertial-rotation sensing, magnetic microscopy with cold atoms, and tests of fundamental symmetries of Nature.Comment: 11 pages; 4 figures; submitted to Nature Physic

    More Than 1,001 Problems with Protein Domain Databases: Transmembrane Regions, Signal Peptides and the Issue of Sequence Homology

    Get PDF
    Large-scale genome sequencing gained general importance for life science because functional annotation of otherwise experimentally uncharacterized sequences is made possible by the theory of biomolecular sequence homology. Historically, the paradigm of similarity of protein sequences implying common structure, function and ancestry was generalized based on studies of globular domains. Having the same fold imposes strict conditions over the packing in the hydrophobic core requiring similarity of hydrophobic patterns. The implications of sequence similarity among non-globular protein segments have not been studied to the same extent; nevertheless, homology considerations are silently extended for them. This appears especially detrimental in the case of transmembrane helices (TMs) and signal peptides (SPs) where sequence similarity is necessarily a consequence of physical requirements rather than common ancestry. Thus, matching of SPs/TMs creates the illusion of matching hydrophobic cores. Therefore, inclusion of SPs/TMs into domain models can give rise to wrong annotations. More than 1001 domains among the 10,340 models of Pfam release 23 and 18 domains of SMART version 6 (out of 809) contain SP/TM regions. As expected, fragment-mode HMM searches generate promiscuous hits limited to solely the SP/TM part among clearly unrelated proteins. More worryingly, we show explicit examples that the scores of clearly false-positive hits, even in global-mode searches, can be elevated into the significance range just by matching the hydrophobic runs. In the PIR iProClass database v3.74 using conservative criteria, we find that at least between 2.1% and 13.6% of its annotated Pfam hits appear unjustified for a set of validated domain models. Thus, false-positive domain hits enforced by SP/TM regions can lead to dramatic annotation errors where the hit has nothing in common with the problematic domain model except the SP/TM region itself. We suggest a workflow of flagging problematic hits arising from SP/TM-containing models for critical reconsideration by annotation users

    Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Get PDF
    Efficient processing of information by the central nervous system (CNS) represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB), which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF) from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs) that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC) transport proteins at those two barriers and underlines differences in their expression between the two barriers. Also, many blood-borne molecules and xenobiotics can diffuse into brain ISF and then into neuronal membranes due to their physicochemical properties. Entry of these compounds could be detrimental for neural transmission and signalling. Thus, BBB and BCSFB express transport proteins that actively restrict entry of lipophilic and amphipathic substances from blood and/or remove those molecules from the brain extracellular fluids. The third part of this review concentrates on the molecular biology of ATP-binding cassette (ABC)-transporters and those SLC transporters that are involved in efflux transport of xenobiotics, their expression at the BBB and BCSFB and differences in expression in the two major blood-brain interfaces. In addition, transport and diffusion of ions by the BBB and CP epithelium are involved in the formation of fluid, the ISF and CSF, respectively, so the last part of this review discusses molecular biology of ion transporters/exchangers and ion channels in the brain endothelial and CP epithelial cells
    corecore