26 research outputs found

    Epidemiology of Doublet/Multiplet Mutations in Lung Cancers: Evidence that a Subset Arises by Chronocoordinate Events

    Get PDF
    BACKGROUND: Evidence strongly suggests that spontaneous doublet mutations in normal mouse tissues generally arise from chronocoordinate events. These chronocoordinate mutations sometimes reflect "mutation showers", which are multiple chronocoordinate mutations spanning many kilobases. However, little is known about mutagenesis of doublet and multiplet mutations (domuplets) in human cancer. Lung cancer accounts for about 25% of all cancer deaths. Herein, we analyze the epidemiology of domuplets in the EGFR and TP53 genes in lung cancer. The EGFR gene is an oncogene in which doublets are generally driver plus driver mutations, while the TP53 gene is a tumor suppressor gene with a more typical situation in which doublets derive from a driver and passenger mutation. METHODOLOGY/PRINCIPAL FINDINGS: EGFR mutations identified by sequencing were collected from 66 published papers and our updated EGFR mutation database (www.egfr.org). TP53 mutations were collected from IARC version 12 (www-p53.iarc.fr). For EGFR and TP53 doublets, no clearly significant differences in race, ethnicity, gender and smoking status were observed. Doublets in the EGFR and TP53 genes in human lung cancer are elevated about eight- and three-fold, respectively, relative to spontaneous doublets in mouse (6% and 2.3% versus 0.7%). CONCLUSIONS/SIGNIFICANCE: Although no one characteristic is definitive, the aggregate properties of doublet and multiplet mutations in lung cancer are consistent with a subset derived from chronocoordinate events in the EGFR gene: i) the eight frameshift doublets (present in 0.5% of all patients with EGFR mutations) are clustered and produce a net in-frame change; ii) about 32% of doublets are very closely spaced (< or =30 nt); and iii) multiplets contain two or more closely spaced mutations. TP53 mutations in lung cancer are very closely spaced (< or =30 nt) in 33% of doublets, and multiplets generally contain two or more very closely spaced mutations. Work in model systems is necessary to confirm the significance of chronocoordinate events in lung and other cancers

    Analysis of Cancer Mutation Signatures in Blood by a Novel Ultra-Sensitive Assay: Monitoring of Therapy or Recurrence in Non-Metastatic Breast Cancer

    Get PDF
    BACKGROUND: Tumor DNA has been shown to be present both in circulating tumor cells in blood and as fragments in the plasma of metastatic cancer patients. The identification of ultra-rare tumor-specific mutations in blood would be the ultimate marker to measure efficacy of cancer therapy and/or early recurrence. Herein we present a method for detecting microinsertions/deletions/indels (MIDIs) at ultra-high analytical selectivity. MIDIs comprise about 15% of mutations. METHODS AND FINDINGS: We describe MIDI-Activated Pyrophosphorolysis (MAP), a method of ultra-high analytical selectivity for detecting MIDIs. The high analytical selectivity of MAP is putatively due to serial coupling of two rare events: heteroduplex slippage and mis-pyrophosphorolysis. MAP generally has an analytical selectivity of one mutant molecule per >1 billion wild type molecules and an analytical sensitivity of one mutant molecule per reaction. The analytical selectivity of MAP is about 100,000-fold better than that of our previously described method of Pyrophosphorolysis Activated Polymerization-Allele specific amplification (PAP-A) for detecting MIDIs. The utility of this method is illustrated in two ways. 1) We demonstrate that two EGFR deletions commonly found in lung cancers are not present in tissue from four normal human lungs (10(7) copies of gDNA each) or in blood samples from 10 healthy individuals (10(7) copies of gDNA each). This is inconsistent, at least at an analytical sensitivity of 10(-7), with the hypotheses of (a) hypermutation or (b) strong selection of these growth factor-mutated cells during normal lung development leads to accumulation of pre-neoplastic cells with these EGFR mutations, which sometimes can lead to lung cancer in late adulthood. Moreover, MAP was used for large scale, high throughput "gene pool" analysis. No germline or early embryonic somatic mosaic mutation was detected (at a frequency of >0.3%) for the 15/18 bp EGFR deletion mutations in 6,400 individuals, suggesting that early embryonic EGFR somatic mutation is very rare, inconsistent with hypermutation or strong selection of these deletions in the embryo. 2) The second illustration of MAP utility is in personalized monitoring of therapy and early recurrence in cancer. Tumor-specific p53 mutations identified at diagnosis in the plasma of six patients with stage II and III breast cancer were undetectable after therapy in four women, consistent with clinical remission, and continued to be detected after treatment in two others, reflecting tumor progression. CONCLUSIONS: MAP has an analytical selectivity of one part per billion for detection of MIDIs and an analytical sensitivity of one molecule. MAP provides a general tool for monitoring ultra-rare mutations in tissues and blood. As an example, we show that the personalized cancer signature in six out of six patients with non-metastatic breast cancer can be detected and that levels over time are correlated with the clinical course of disease

    Growth regulation of simian and human AIDS-related non-Hodgkin's lymphoma cell lines by TGF-β1 and IL-6

    Get PDF
    BACKGROUND: AIDS-related non-Hodgkin's lymphoma (AIDS-NHL) is the second most frequent cancer associated with AIDS, and is a frequent cause of death in HIV-infected individuals. Experimental analysis of AIDS-NHL has been facilitated by the availability of an excellent animal model, i.e., simian Acquired Immunodeficiency Syndrome (SAIDS) in the rhesus macaque consequent to infection with simian immunodeficiency virus. A recent study of SAIDS-NHL demonstrated a lymphoma-derived cell line to be sensitive to the growth inhibitory effects of the ubiquitous cytokine, transforming growth factor-beta (TGF-beta). The authors concluded that TGF-beta acts as a negative growth regulator of the lymphoma-derived cell line and, potentially, as an inhibitory factor in the regulatory network of AIDS-related lymphomagenesis. The present study was conducted to assess whether other SAIDS-NHL and AIDS-NHL cell lines are similarly sensitive to the growth inhibitory effects of TGF-beta, and to test the hypothesis that interleukin-6 (IL-6) may represent a counteracting positive influence in their growth regulation. METHODS: Growth stimulation or inhibition in response to cytokine treatment was quantified using trypan blue exclusion or colorimetric MTT assay. Intracellular flow cytometry was used to analyze the activation of signaling pathways and to examine the expression of anti-apoptotic proteins and distinguishing hallmarks of AIDS-NHL subclass. Apoptosis was quantified by flow cytometric analysis of cell populations with sub-G1 DNA content and by measuring activated caspase-3. RESULTS: Results confirmed the sensitivity of LCL8664, an immunoblastic SAIDS-NHL cell line, to TGF-beta1-mediated growth inhibition, and further demonstrated the partial rescue by simultaneous treatment with IL-6. IL-6 was shown to activate STAT3, even in the presence of TGF-beta1, and thereby to activate proliferative and anti-apoptotic pathways. By comparison, human AIDS-NHL cell lines differed in their responsiveness to TGF-beta1 and IL-6. Analysis of a recently derived AIDS-NHL cell line, UMCL01-101, indicated that it represents immunoblastic AIDS-DLCBL. Like LCL-8664, UMCL01-101 was sensitive to TGF-beta1-mediated inhibition, rescued partially by IL-6, and demonstrated rapid STAT3 activation following IL-6 treatment even in the presence of TGF-beta1. CONCLUSION: These studies indicate that the sensitivity of immunoblastic AIDS- or SAIDS-DLBCL to TGF-beta1-mediated growth inhibition may be overcome through the stimulation of proliferative and anti-apoptotic signals by IL-6, particularly through the rapid activation of STAT3

    The placenta: phenotypic and epigenetic modifications induced by Assisted Reproductive Technologies throughout pregnancy

    Get PDF

    Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma

    No full text
    Human synovial sarcomas contain a recurrent and specific chromosomal translocation t(X;18)(p11.2;q11.2). By screening a synovial sarcoma cDNA library with a yeast artificial chromosome spanning the X chromosome breakpoint, we have indentified a hybrid transcript that contains 5′ sequences (designated SYT) mapping to chromosome 18 and 3′ sequences (designated SSX) mapping to chromosome X. An SYT probe detected genomic rearrangements in 10/13 synovial sarcomas. Sequencing of cDNA clones shows that the normal SYT gene encodes a protein rich in glutamine, proline and glycine, and indicates that in synovial sarcoma rearrangement of the SYT gene results in the formation of an SYT–SSX fusion protein. Both SYT and SSX failed to exhibit significant homology to known gene sequences

    Biotechnological Strategies for Controlling Wine Oxidation

    No full text
    Apart from the controversial positive effects of moderate wine consumption on human health, wine antioxidant capacity plays a key role in winemaking technology. From juice extraction to bottle storage, oxygen management is one of the most critical points for making quality wines. In the past, the protection of juice and wine from oxidations was based on the sole use of sulfur dioxide; more recently, the toxicity and the allergenic potential of this additive, together with the increased knowledge on wine oxidation mechanisms, have given rise to new biotechnological approaches and producing trends, leading to a significant reduction of sulfites in winemaking. The aim of this paper is to review the oxidation mechanisms of grape juice and wine and to discuss the opportunities to reduce as much as possible sulfur dioxide addition by a proper management of alcoholic and malolactic fermentation and by the supplementation of some important yeast nutritional factors (e.g., thiamine). The use of natural antioxidants complementing the activity of sulfites (i.e., ascorbic acid, glutathione, yeast lees, and yeast derivatives) is also discusse
    corecore