7,764 research outputs found

    The quest for three-color entanglement: experimental investigation of new multipartite quantum correlations

    Full text link
    We experimentally investigate quadrature correlations between pump, signal, and idler fields in an above-threshold optical parametric oscillator. We observe new quantum correlations among the pump and signal or idler beams, as well as among the pump and a combined quadrature of signal and idler beams. A further investigation of unforeseen classical noise observed in this system is presented, which hinders the observation of the recently predicted tripartite entanglement. In spite of this noise, current results approach the limit required to demonstrate three-color entanglement.Comment: 10 pages, 5 figures, submitted to Opt. Expres

    Generation of Bright Two-Color Continuous Variable Entanglement

    Full text link
    We present the first measurement of squeezed-state entanglement between the twin beams produced in an Optical Parametric Oscillator (OPO) operating above threshold. Besides the usual squeezing in the intensity difference between the twin beams, we have measured squeezing in the sum of phase quadratures. Our scheme enables us to measure such phase anti-correlations between fields of different frequencies. In the present measurements, wavelengths differ by ~1 nm. Entanglement is demonstrated according to the Duan et al. criterion [Phys. Rev. Lett. 84, 2722 (2000)] Δ2p^−+Δ2q^+=1.47(2)<2\Delta^2\hat{p}_- +\Delta^2\hat{q}_+=1.47(2)<2. This experiment opens the way for new potential applications such as the transfer of quantum information between different parts of the electromagnetic spectrum.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Direct Production of Tripartite Pump-Signal-Idler Entanglement in the Above-Threshold Optical Parametric Oscillator

    Get PDF
    We calculate the quantum correlations existing among the three output fields (pump, signal, and idler) of a triply resonant non-degenerate Optical Parametric Oscillator operating above threshold. By applying the standard criteria [P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003)], we show that strong tripartite continuous-variable entanglement is present in this well-known and simple system. Furthermore, since the entanglement is generated directly from a nonlinear process, the three entangled fields can have very different frequencies, opening the way for multicolored quantum information networks.Comment: 4 pages, 3 figure

    Generation of Kerr non-Gaussian motional states of trapped ions

    Full text link
    Non-Gaussian states represent a powerful resource for quantum information protocols in the continuous variables regime. Cat states, in particular, have been produced in the motional degree of freedom of trapped ions by controlled displacements dependent on the ionic internal state. An alternative method harnesses the Kerr nonlinearity naturally existent in this kind of system. We present detailed calculations confirming its feasibility for typical experimental conditions. Additionally, this method permits the generation of complex non-Gaussian states with negative Wigner functions. Especially, superpositions of many coherent states are achieved at a fraction of the time necessary to produce the cat state.Comment: 6 pages, 5 figure

    Robustness of bipartite Gaussian entangled beams propagating in lossy channels

    Full text link
    Subtle quantum properties offer exciting new prospects in optical communications. Quantum entanglement enables the secure exchange of cryptographic keys and the distribution of quantum information by teleportation. Entangled bright beams of light attract increasing interest for such tasks, since they enable the employment of well-established classical communications techniques. However, quantum resources are fragile and undergo decoherence by interaction with the environment. The unavoidable losses in the communication channel can lead to a complete destruction of useful quantum properties -- the so-called "entanglement sudden death". We investigate the precise conditions under which this phenomenon takes place for the simplest case of two light beams and demonstrate how to produce states which are robust against losses. Our study sheds new light on the intriguing properties of quantum entanglement and how they may be tamed for future applications.Comment: To be published - Nature Photonic

    Disentanglement in Bipartite Continuous-Variable Systems

    Full text link
    Entanglement in bipartite continuous-variable systems is investigated in the presence of partial losses, such as those introduced by a realistic quantum communication channel, e.g. by propagation in an optical fiber. We find that entanglement can vanish completely for partial losses, in a situa- tion reminiscent of so-called entanglement sudden death. Even states with extreme squeezing may become separable after propagation in lossy channels. Having in mind the potential applications of such entangled light beams to optical communications, we investigate the conditions under which entanglement can survive for all partial losses. Different loss scenarios are examined and we derive criteria to test the robustness of entangled states. These criteria are necessary and sufficient for Gaussian states. Our study provides a framework to investigate the robustness of continuous-variable entanglement in more complex multipartite systems.Comment: Phys. Rev. A (in press
    • …
    corecore