55 research outputs found

    Loss of Nrf2 abrogates the protective effect of Keap1 down regulation in a preclinical model of cutaneous squamous cell carcinoma

    Get PDF
    Cutaneous squamous cell carcinomas (cSCC) are the most common and highly mutated human malignancies, challenging identification of driver mutations and targeted therapies. Transcription factor NF-E2 p45-related factor 2 (Nrf2) orchestrates a cytoprotective inducible program, which counteracts the damaging effects of solar UV radiation, the main etiological factor in cSCC development. Downregulation of Kelch-like ECH-associated protein 1 (Keap1), a Cullin-3/Rbx1 ubiquitin ligase substrate adaptor protein, which mediates the ubiquitination and proteasomal degradation of Nrf2, has a strong protective effect in a preclinical model of cSCC. However, in addition to Nrf2, Keap1 affects ubiquitination of other proteins in the carcinogenesis process, including proteins involved in inflammation and DNA damage repair. Here, we generated Keap1(flox/flox) SKH-1 hairless mice in which Nrf2 is disrupted (Keap1(flox/flox)/Nrf2(−/−)) and subjected them chronically to solar-simulated UV radiation. We found that the incidence, multiplicity and burden of cSCC that form in Keap1(flox/flox)/Nrf2(−/−) mice are much greater than in their Keap1(flox/flox)/Nrf2(+/+) counterparts, establishing Nrf2 activation as the protection mediator. Our findings further imply that inhibition of Nrf2 globally, a strategy proposed for cancer treatment, is unlikely to be beneficial

    Nutrition and lung cancer: a case control study in Iran

    Get PDF
    Background: Despite many prospective and retrospective studies about the association of dietary habit and lung cancer, the topic still remains controversial. So, this study aims to investigate the association of lung cancer with dietary factors. Method: In this study 242 lung cancer patients and their 484 matched controls on age, sex, and place of residence were enrolled between October 2002 to 2005. Trained physicians interviewed all participants with standardized questionnaires. The middle and upper third consumer groups were compared to the lower third according to the distribution in controls unless the linear trend was significant across exposure groups. Result: Conditional logistic regression was used to evaluate the association with lung cancer. In a multivariate analysis fruit (Ptrend < 0.0001), vegetable (P = 0.001) and sunflower oil (P = 0.006) remained as protective factors and rice (P = 0.008), bread (Ptrend = 0.04), liver (P = 0.004), butter (Ptrend = 0.04), white cheese (Ptrend < 0.0001), beef (Ptrend = 0.005), vegetable ghee (P < 0.0001) and, animal ghee (P = 0.015) remained as risk factors of lung cancer. Generally, we found positive trend between consumption of beef (P = 0.002), bread (P < 0.0001), and dairy products (P < 0.0001) with lung cancer. In contrast, only fruits were inversely related to lung cancer (P < 0.0001). Conclusion: It seems that vegetables, fruits, and sunflower oil could be protective factors and bread, rice, beef, liver, dairy products, vegetable ghee, and animal ghee found to be possible risk factors for the development of lung cancer in Iran

    Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation

    Full text link

    Metabolic rewiring in mutant Kras lung cancer

    No full text
    Lung cancer is the leading cause of cancer-related death worldwide, reflecting an unfortunate combination of very high prevalence and low survival rates, as most cases are diagnosed at advanced stages when treatment efficacy is limited. Lung cancer comprises several disease groups with non small cell lung cancer (NSCLC) accounting for ~ 85% of cases and lung adenocarcinoma being its most frequent histological subtype. Mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) affect ~ 30% of lung adenocarcinomas but unlike other commonly altered proteins (EGFR and ALK, affected in ~ 14% and 7% of cases respectively), mutant KRAS remains untargetable. Therapeutic strategies that rely instead on the inhibition of mutant KRAS functional output or the targeting of mutant KRAS cellular dependencies (i.e. synthetic lethality) are an appealing alternative approach. Recent studies focused on the metabolic properties of mutant KRAS lung tumours have uncovered unique metabolic features that can potentially be exploited therapeutically. We review these findings here with a particular focus on in vivo, physiologic, mutant KRAS activity
    corecore