12 research outputs found

    Sphingosine-1-phosphate links glycosphingolipid metabolism to neurodegeneration via a calpain-mediated mechanism

    Get PDF
    We have recently reported that the bioactive lipid sphingosine-1-phosphate (S1P), usually signaling proliferation and anti-apoptosis induces neuronal death when generated by sphingosine-kinase2 and when accumulation due to S1P-lyase deficiency occurs. In the present study, we identify the signaling cascade involved in the neurotoxic effect of sphingoid-base phosphates. We demonstrate that the calcium-dependent cysteine protease calpain mediates neurotoxicity by induction of the endoplasmic reticulum stress-specific caspase cascade and activation of cyclin-dependent kinase5 (CDK5). The latter is involved in an abortive reactivation of the cell cycle and also enhances tau phosphorylation. Neuroanatomical studies in the cerebellum document for the first time that indeed neurons with abundant S1P-lyase expression are those, which degenerate first in S1P-lyase-deficient mice. We therefore propose that an impaired metabolism of glycosphingolipids, which are prevalent in the central nervous system, might be linked via S1P, their common catabolic intermediate, to neuronal death

    Comparison of Fatty-acid Alpha-oxidation By Rat Hepatocytes and By Liver-microsomes Fortified With Nadph, Fe3+ and Phosphate

    No full text
    Rat liver microsomes, when fortified with NADPH, Fe3+ and phosphate, can catalyze the oxidative decarboxylation (alpha-oxidation) of 3-methyl-substituted fatty acids (phytanic and 3-methylheptadecanoic acids) at rates that equal 60-70% of those observed in isolated hepatocytes (Huang, S., Van Veldhoven, P.P., Vanhoutte, F., Parmentier, G., Eyssen, H.J., and Mannaerts, G.P., 1992, Arch. Biochem. Biophys. 296, 214-223). In the present study we set out to identify and compare the products and possible intermediates of alpha-oxidation formed in rat hepatocytes and by rat liver microsomes. In the presence of NADPH, Fe3+ and phosphate, microsomes decarboxylated not only 3-methyl fatty acids but also 2-methyl fatty acids and even straight chain fatty acids. The decarboxylation products of 3-methylheptadecanoic and palmitic acids were purified by highperformance liquid chromatography and identified by gas chromatography/mass spectrometry as 2-methylhexadecanoic and pentadecanoic acids, respectively. Inclusion in the incubation mixtures of glutathione plus glutathione peroxidase inhibited decarboxylation by more than 90%, suggesting that a 2-hydroperoxy fatty acid is formed as a possible intermediate. However, we have not yet been able to unequivocally identify this intermediate. Instead, several possible rearrangement metabolites were identified. In isolated rat hepatocytes incubated with 3-methylheptadecanoic acid, the formation of the decarboxylation product, 2-methylhexadecanoic acid, was demonstrated, but no accumulation of putative intermediates or rearrangement products was observed. Our data do not allow us to draw conclusions on whether the reconstituted microsomal system is representative of the cellular alpha-oxidation system. However, the results we obtained with [3-H-3]-labelled fatty acids indicate that during a-oxidation in intact cells the hydrogen at carbon-3, which carries the methyl branch, is not attacked

    Molecular characterization of the human peroxisomal branched-chain acyl-CoA oxidase: cDNA cloning, chromosomal assignment, tissue distribution, and evidence for the absence of the protein in Zellweger syndrome.

    No full text
    Peroxisomes in human liver contain two distinct acyl-CoA oxidases with different substrate specificities: (i) palmitoyl-CoA oxidase, oxidizing very long straight-chain fatty acids and eicosanoids, and (ii) a branched-chain acyl-CoA oxidase (hBRCACox), involved in the degradation of long branched fatty acids and bile acid intermediates. The accumulation of branched fatty acids and bile acid intermediates leads to severe mental retardation and death of the diseased children. In this study, we report the molecular characterization of the hBRCACox, a prerequisite for studying mutations in patients with a single enzyme deficiency. The composite cDNA sequence of hBRCACox, derived from overlapping clones isolated via immunoscreening and hybridization of human liver cDNA expression libraries, consisted of 2225 bases and contained an open reading frame of 2046 bases, encoding a protein of 681 amino acids with a calculated molecular mass of 76,739 Da. The C-terminal tripeptide of the protein is SKL, a known peroxisome targeting signal. Sequence comparison with the other acyl-CoA oxidases and evolutionary analysis revealed that, despite its broader substrate specificity, the hBRCACox is the human homolog of rat trihydroxycoprostanoyl-CoA oxidase (rTHCCox) and that separate gene duplication events led to the occurrence in mammals of acyl-CoA oxidases with different substrate specificities. Northern blot analysis demonstrated that—in contrast to the rTHCCox gene—the hBRCACox gene is transcribed also in extrahepatic tissues such as heart, kidney, skeletal muscle, and pancreas. The highest levels of the 2.6-kb mRNA were found in heart, followed by liver. The enzyme is encoded by a single-copy gene, which was assigned to chromosome 3p14.3 by fluorescent in situ hybridization. It was absent from livers of Zellweger patients as shown by immunoblot analysis and immunocytochemistry
    corecore