9 research outputs found

    Proximity effect and strong coupling superconductivity in nanostructures built with an STM

    Full text link
    We present high resolution tunneling spectroscopy data at very low temperatures on superconducting nanostructures of lead built with an STM. By applying magnetic fields, superconductivity is restricted to length scales of the order of the coherence length. We measure the tunneling conductance and analyze the phonon structure and the low energy DOS. We demonstrate the influence of the geometry of the system on the magnetic field dependence of the tunneling density of states, which is gapless in a large range of fields. The behavior of the features in the tunneling conductance associated to phonon modes are explained within current models.Comment: 4 figures, 4 page

    A Two-dimensional Superconductor in a Tilted Magnetic Field - new states with finite Cooper-pair momentum

    Full text link
    Varying the angle Theta between applied field and the conducting planes of a layered superconductor in a small interval close to the plane-parallel field direction, a large number of superconducting states with unusual properties may be produced. For these states, the pair breaking effect of the magnetic field affects both the orbital and the spin degree of freedom. This leads to pair wave functions with finite momentum, which are labeled by Landau quantum numbers 0<n<\infty. The stable order parameter structure and magnetic field distribution for these states is found by minimizing the quasiclassical free energy near H_{c2} including nonlinear terms. One finds states with coexisting line-like and point-like order parameter zeros and states with coexisting vortices and antivortices. The magnetic response may be diamagnetic or paramagnetic depending on the position within the unit cell. The structure of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states at Theta=0 is reconsidered. The transition n->\infty of the paramagnetic vortex states to the FFLO-limit is analyzed and the physical reason for the occupation of higher Landau levels is pointed out.Comment: 24 pages, 11 figure

    Unconventional vortex dynamics in mesoscopic superconducting corbino disks

    No full text
    The discrete shell structure of vortex matter strongly influences the flux dynamics in mesoscopic superconducting Corbino disks. While the dynamical behavior is well understood in large and in very small disks, in the intermediate-size regime it occurs to be much more complex and unusual, due to (in)commensurability between the vortex shells. We demonstrate unconventional vortex dynamics (inversion of shell velocities with respect to the gradient driving force) and angular melting (propagating from the boundary where the shear stress is minimum, towards the center) in mesoscopic Corbino disks.Comment: 4 pages, 3 figure

    Static and dynamic behaviours of multivortex states in a superconducting sample with mesoscopic pinning sites

    No full text
    This preliminary work has focused on the static transitions between the multivortex states interacting with square arrays of the mesoscopic pinning sites in superconducting samples. Our results were obtained from an extensive series of numerical simulations as functions of the magnetic field, pinning radius, and sample size. We have presented a wide range of multivortex configurations from commensurate dimer states to more concentric vortex shells at the matching fields. The stability of these states was also studied by means of the current-voltage V(I) curves which illustrate dynamic phase transitions as a function of applied driving force. These transitions manifested themselves as either a sudden jump in velocity or a nonlinear increase with velocity fluctuations in V(I) curves. We have investigated whether that the phase transitions between the pinned regime and the elastic flow regime are indicative of the stability of the initial vortex states. The variety of intermediate flow phases is attributed to large pinning size (reentrant behavior), strong commensurability and caging effects. In particular, three-shell vortex structures were obtained in the presence of larger pinning sites at adequate matching magnetic fields

    The Epstein-Barr virus and its association with human cancers

    No full text
    corecore