75 research outputs found

    Detection of a new methanol maser line with the Kitt Peak 12-m telescope by remote observing from Moscow

    Get PDF
    A new methanol maser line 6(-1)-5(0)E at 133 GHz was detected with the 12-m Kitt Peak radio telescope using remote observation mode from Moscow. Moderately strong, narrow maser lines were found in DR21(OH), DR21-W, OMC-2, M8E, NGC2264, L379, W33-Met. The masers have similar spectral features in other transitions of methanol-E at 36 and 84 GHz, and in transitions of methanol-A at 44 and 95 GHz. All these are Class I transitions, and the new masers also belong to Class I. In two other methanol transitions near 133 GHz, 5(-2)-6(-1)E and 6(2)-7(1)A+, only thermal emission was detected in some sources. Several other sources with wider lines in the transition 6(-1)-5(0)E also may be masers, since they do not show any emission at the two other methanol transitons near 133 GHz. These are NGC2071, S231, S255, GGD27, also known as Class I masers. The ratio of intensities and line widths of the 133 GHz masers and 44 GHz masers is consistent with the saturated maser model, in which the line rebroadening with respect to unsaturated masers is suppressed by cross relaxation due to elastic collisions.Comment: 4 pages, AASTeX text, uses aasms4.sty, 2 Postscript figures, to be published in Ap

    Class I methanol masers in low-mass star formation regions

    Full text link
    Four Class I maser sources were detected at 44, 84, and 95 GHz toward chemically rich outflows in the regions of low-mass star formation NGC 1333I4A, NGC 1333I2A, HH25, and L1157. One more maser was found at 36 GHz toward a similar outflow, NGC 2023. Flux densities of the newly detected masers are no more than 18 Jy, being much lower than those of strong masers in regions of high-mass star formation. The brightness temperatures of the strongest peaks in NGC 1333I4A, HH25, and L1157 at 44 GHz are higher than 2000 K, whereas that of the peak in NGC 1333I2A is only 176 K. However, rotational diagram analysis showed that the latter source is also a maser. The main properties of the newly detected masers are similar to those of Class I methanol masers in regions of massive star formation. The former masers are likely to be an extension of the latter maser population toward low luminosities of both the masers and the corresponding YSOs.Comment: 5 pages, 1 figure, Proc. IAU Symp. 287 "Cosmic Masers: from OH to H0". LSR velocities of the HH25 masers, which are presented in Table 1, are correcte

    Non-equilibrium excitation of methanol in Galactic molecular clouds: multi-transitional observations at 2 mm

    Full text link
    We observed 14 methanol transitions near lambda=2 mm in Galactic star-forming regions. Broad, quasi-thermal J(0)-J(-1)E methanol lines near 157 GHz were detected toward 73 sources. Together with the 6(-1)-5(0)E and 5(-2)-6(-1)E lines at 133 GHz and the 7(1)-7(0)E line at 165 GHz, they were used to study the methanol excitation. In the majority of the observed objects, the Class I 6(-1)-5(0)E transition is inverted, and the Class II 5(-2)-6(-1)E and 6(0)-6(-1)E transitions are overcooled. This is exactly as predicted by models of low gain Class I masers. The absence of the inversion of Class II transitions 5(-2)-6(-1)E and 6(0)-6(-1)E means that quasi-thermal methanol emission in all objects arises in areas without a strong radiation field, which is required for the inversion.Comment: 23 pages paper (uses aasms4.sty), 12 pages tables (uses apjpt4.sty), 10 Jpeg figures, submitted to the ApJ

    Spectral Survey of the Star Formation Region DR21OH in the 4 mm Wavelength Range

    Full text link
    The results of a spectral survey of the region of massive star formation DR21OH in the 4-mm wavelength range are presented. Sixty-nine molecules and their isotopologues have been detected, ranging from simple diatomic or triatomic species such as SO, SiO and CCH, to complex organic molecules such as CH3_3OCHO or CH3_3OCH3_3. The obtained results qualitatively repeat the results of the survey of the same source at 3~mm. The inventories of molecules found at 3mm and 4mm overlap to a great extent. However, at 4 mm we found a number of species that have no allowed transitions in the 3-mm wavelength range, e.g. DCN, DNC, or SO+^+. The bulk of the molecules detected at 4~mm are those that are common for dense cores, e.g., HC3_3N or CH3_3CCH, but some of the detected species are typical for hot cores. The latter include complex organic molecules CH3_3OCHO, CH3_3CH2_2OH, CH3_3OCH3_3, etc. However, the detected emission of these molecules probably arises in a gas heated to 30 K only. Nine molecules, including complex species CH3_3C3_3N, CH3_3CH2_2CN, CH3_3COCH3_3, were found by spectral line stacking. This demonstrates the prospects of the method in the study of molecular clouds.Comment: 36 pages, 4 figure

    The detection of Class I methanol masers towards regions of low-mass star formation

    Full text link
    Six young bipolar outflows in regions of low-to-intermediate-mass star formation were observed in the 7_0-6_1A+, 8_0-7_1A+, and 5_{-1}-4_0E methanol lines at 44, 95, and 84 GHz, respectively. Narrow features were detected towards NGC 1333IRAS4A, HH 25MMS, and L1157 B1. Flux densities of the detected lines are no higher than 11 Jy, which is much lower than the flux densities of strong maser lines in regions of high-mass star formation. Analysis shows that most likely the narrow features are masers.Comment: 12 pages, 6 figures, to be published in Astronomy Report

    Modeling of the formation of complex molecules in protostellar objects

    Full text link
    The results of molecular composition modeling are presented for the well studied low-mass star-forming region TMC-1 and the massive star-forming region DR21(OH), which is poorly studied from a chemical point of view. The column densities of dozens of molecules, ranging from simple diatomic to complex organic molecules, are reproduced to within an order of magnitude using a one-dimensional model for the physical and chemical structure of these regions. The chemical ages of the regions are approximately 105 years in both cases. The main desorption mechanisms that are usually included in chemical models (photodesorption, thermal desorption, and cosmic-ray-induced desorption) do not provide sufficient gasphase abundances of molecules that are synthesized in surface reactions; however, this shortcoming can be removed by introducing small amount of reactive desorption into the model. It is possible to reproduce the properties of the TMC-1 chemical composition in a standard model, without requiring additional assumptions about an anomalous C/O ratio or the recent accretion of matter enriched with atomic carbon, as has been proposed by some researchers. © 2013 Pleiades Publishing, Ltd
    corecore