3,518 research outputs found

    Quantum computing based on space states without charge transfer

    Full text link
    An implementation of a quantum computer based on space states in double quantum dots is discussed. There is no charge transfer in qubits during calculation, therefore, uncontrollable entan-glement between them due to long-range Coulomb interaction is suppressed. Other plausible sources of decoherence caused by interaction with phonons and gates could be substantially suppressed in the structure too. We also demonstrate how all necessary quantum logic operations, initialization, writing, and read-out could be carried out in the computer.Comment: 7 pages, 4 figures, RevTeX forma

    Infrared radiation of Venusian clouds

    Get PDF
    The thermal infrared emission of Venus measured by Venera-9 and Venera-10 is analyzed. The emission of the night side corresponds to a brightness temperature of 244 K. The brightest temperature of the day side is 233-234 K. The extent of the upper layer of clouds, in which the thermal emission is formed, is 4-6 km. The altitude of the emitting layer above the surface of the planet (64-67 km) is determined from the brightness temperature and the existing models of the atmosphere of Venus. In some cases, correlation is noted between the inhomogeneity and the details of the ultraviolet image. The day side temperatures strangely coincide with the freezing point of sulfuric acid at a concentration of 66-77%

    Thin films flowing down inverted substrates: Three dimensional flow

    Full text link
    We study contact line induced instabilities for a thin film of fluid under destabilizing gravitational force in three dimensional setting. In the previous work (Phys. Fluids, {\bf 22}, 052105 (2010)), we considered two dimensional flow, finding formation of surface waves whose properties within the implemented long wave model depend on a single parameter, D=(3Ca)1/3cotαD=(3Ca)^{1/3}\cot\alpha, where CaCa is the capillary number and α\alpha is the inclination angle. In the present work we consider fully 3D setting and discuss the influence of the additional dimension on stability properties of the flow. In particular, we concentrate on the coupling between the surface instability and the transverse (fingering) instabilities of the film front. We furthermore consider these instabilities in the setting where fluid viscosity varies in the transverse direction. It is found that the flow pattern strongly depends on the inclination angle and the viscosity gradient

    Interaction of Radiation and a Relativistic Electron in Motion in a Constant Magnetic Field

    Get PDF
    The work examines the effect of multiple photon emission on the quantum mechanical state of an electron emitting synchrotron radiation and on the intensity of that radiation. Calculations are done with the variant of perturbation theory based on the use of extended coherent states. A general formula is derived for the number of emitted photons, which allows for taking into account their mutual interaction. A model problem is used to demonstrate the absence of the infrared catastrophe in the modified perturbation theory. Finally, the electron density matrix is calculated, and the analysis of this matrix makes it possible to conclude that the degree of the elecron's spatial localization increases with the passage of time if the electron is being accelerated.Comment: 29 pages, no figure

    Electrical discharges in the atmosphere of Venus

    Get PDF
    Data received from Venera 11 and 12 experiments involving the electrical activity of the atmosphere of Venus show that the electrical discharges occur in the cloud layer. Their energy is roughly the same as in terrestrial lightning, but with a pulse repetition frequency of the discharges which is much greater

    Cutting Edge Geometry Effect on Plastic Deformation of Titanium Alloy

    Get PDF
    The paper presents experimental studies of ОТ4 titanium alloy machining with cutting edges of various geometry parameters. Experiments were performed at a low speed by the scheme of free cutting. Intensity of plastic shear strain was set for defining of cutting edge geometry effect on machining. Images of chip formed are shown. Estimation of strain magnitude was accomplished with digital image correlation method. Effect of rake angle and cutting edge angle has been studied. Depth of deformed layer and the area of the plastic strain is determine. Results showed that increasing the angle of the cutting edge inclination results in a change the mechanism of chip formation

    Nucleon-nucleon interaction in the JJ-matrix inverse scattering approach and few-nucleon systems

    Full text link
    The nucleon-nucleon interaction is constructed by means of the JJ-matrix version of inverse scattering theory. Ambiguities of the interaction are eliminated by postulating tridiagonal and quasi-tridiagonal forms of the potential matrix in the oscillator basis in uncoupled and coupled waves, respectively. The obtained interaction is very accurate in reproducing the NNNN scattering data and deuteron properties. The interaction is used in the no-core shell model calculations of 3^3H and 4^4He nuclei. The resulting binding energies of 3^3H and 4^4He are very close to experimental values.Comment: Text is revised, new figures and references adde

    On the Weyl - Eddington - Einstein affine gravity in the context of modern cosmology

    Full text link
    We propose new models of an `affine' theory of gravity in DD-dimensional space-times with symmetric connections. They are based on ideas of Weyl, Eddington and Einstein and, in particular, on Einstein's proposal to specify the space - time geometry by use of the Hamilton principle. More specifically, the connection coefficients are derived by varying a `geometric' Lagrangian that is supposed to be an arbitrary function of the generalized (non-symmetric) Ricci curvature tensor (and, possibly, of other fundamental tensors) expressed in terms of the connection coefficients regarded as independent variables. In addition to the standard Einstein gravity, such a theory predicts dark energy (the cosmological constant, in the first approximation), a neutral massive (or, tachyonic) vector field, and massive (or, tachyonic) scalar fields. These fields couple only to gravity and may generate dark matter and/or inflation. The masses (real or imaginary) have geometric origin and one cannot avoid their appearance in any concrete model. Further details of the theory - such as the nature of the vector and scalar fields that can describe massive particles, tachyons, or even `phantoms' - depend on the concrete choice of the geometric Lagrangian. In `natural' geometric theories, which are discussed here, dark energy is also unavoidable. Main parameters - mass, cosmological constant, possible dimensionless constants - cannot be predicted, but, in the framework of modern `multiverse' ideology, this is rather a virtue than a drawback of the theory. To better understand possible applications of the theory we discuss some further extensions of the affine models and analyze in more detail approximate (`physical') Lagrangians that can be applied to cosmology of the early Universe.Comment: 15 pages; a few misprints corrected, one footnote removed and two added, the formulae and results unchanged but the text somewhat edited, esp. in Sections 4,5; the reference to the RFBR grant corrected
    corecore