13 research outputs found

    Π‘Π˜Π›ΠΠ’Π ΠΠΠ‘ΠžΠ”Π•Π Π–ΠΠ©Π˜Π• ΠŸΠžΠ›Π˜ΠœΠ•Π’ΠΠšΠ Π˜Π›ΠΠ’Π«

    Get PDF
    The possibility of synthesizing silatrane-containing polymers was investigated using three different synthetic methods: the formation of silatrane fragments from polymers with trialkoxysilyl groups, the copolymerization of silatrane-containing monomers, and the reaction of silatranes with functional copolymers. The obtained polymethacrylate copolymers were characterized using gel permeation chromatography, IR and NMR spectroscopy. It was shown that depending on the synthesis scheme used, polymers were obtained in the form of three-dimensional structures or soluble products. It was established that the molecular weight of the synthesized polymers depended significantly on both the content of silatrane fragments and the synthesis technique used. It was shown that the modification of linear carboxyl-containing copolymers by silatranes allows the synthesis of high-molecular polymers with a high content of silatrane fragments. For the synthesized polymers, thermal properties were investigated, and the hydrophobicity of the surface of polymer films was also evaluated. It was found that all the studied polymers did not have clear melting and crystallization temperatures. The polymers were stable in an inert atmosphere up to 270-280 Β°C, whereas in air they decomposed at lower temperatures with the restructuring of the macromolecular skeleton and the formation of highly heat-resistant silicone structures. An increase in the content of silatrane moieties in the copolymers led to an increase in the hydrophilicity of polymers.ИсслСдована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ провСдСния синтСза силатрансодСрТащих ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² с использованиСм Ρ‚Ρ€Π΅Ρ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… синтСтичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ: ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ силатрановых Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² с Ρ‚Ρ€ΠΈΠ°Π»ΠΊΠΎΠΊΡΠΈΡΠΈΠ»ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ, сополимСризация силатрансодСрТащих ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€ΠΎΠ² ΠΈ взаимодСйствиС рСакционноспособных силатранов с Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ сополимСрами. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π½Ρ‹Π΅ сополимСры Π±Ρ‹Π»ΠΈ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ с использованиСм гСль-ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‰Π΅ΠΉ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠ΅ΠΉ, ИК- ΠΈ ЯМР-спСктроскопии. Показано, Ρ‡Ρ‚ΠΎ Π² зависимости ΠΎΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠΉ схСмы синтСза ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π² Π²ΠΈΠ΄Π΅ частично ΡΡˆΠΈΡ‚Ρ‹Ρ… ΠΈΠ»ΠΈ растворимых ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ². УстановлСно, Ρ‡Ρ‚ΠΎ молСкулярная масса синтСзированных ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² сущСствСнно зависСла ΠΊΠ°ΠΊ ΠΎΡ‚ содСрТания Π² Π½ΠΈΡ… силатрановых Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ², Ρ‚Π°ΠΊ ΠΈ ΠΎΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ синтСза. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ модификация Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… карбоксилсодСрТащих сополимСров силатранами позволяСт ΡΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ высокомолСкулярныС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ с высоким содСрТаниСм силатрановых Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ². Для синтСзированных ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π±Ρ‹Π»ΠΈ исслСдованы тСрмичСскиС свойства, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ†Π΅Π½Π΅Π½Π° Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±Π½ΠΎΡΡ‚ΡŒ повСрхности ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΏΠ»Π΅Π½ΠΎΠΊ. Π‘Ρ‹Π»ΠΎ установлСно, Ρ‡Ρ‚ΠΎ всС исслСдованныС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ Π½Π΅ ΠΈΠΌΠ΅Π»ΠΈ Ρ‡Π΅Ρ‚ΠΊΠΈΡ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ плавлСния ΠΈ кристаллизации. ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ Π±Ρ‹Π»ΠΈ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹ Π² ΠΈΠ½Π΅Ρ€Ρ‚Π½ΠΎΠΉ атмосфСрС Π΄ΠΎ 270-280 Β°Π‘, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π½Π° Π²ΠΎΠ·Π΄ΡƒΡ…Π΅ ΠΎΠ½ΠΈ Ρ€Π°Π·Π»Π°Π³Π°Π»ΠΈΡΡŒ ΠΏΡ€ΠΈ Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΈΡ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… с пСрСстройкой макромолСкулярного скСлСта ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ высокотСрмостойких крСмнийорганичСских структур. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ содСрТания силатрановых Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π² сополимСрах ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ²

    ВлияниС ΠΏΠΎΠ»ΠΈ- N-Π²ΠΈΠ½ΠΈΠ»ΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚Π°ΠΌΠ° Π½Π° Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ трипсина

    Get PDF
    It is known that some synthetic polymers can enhance the stability of some proteins including enzymes against thermal denaturation. An important example of such behaviour is poly-N-vinylcaprolactam (PVC), although the mechanism of this phenomenon is not fully understood. This paper deals with this problem with the system PVC-trypsin as an example. PVC is a polymer, which has lower critical solution temperature (LCST) in aqueous solution. It is shown that the rate of enzymatic hydrolysis of a substrate – benzoyl arginine – n-nitroanilide (BAPNA) – with trypsin in aqueous solutions of PVC at 25ΒΊC is higher than that in the buffer solution. It is supposed that this effect is a consequence of the complex formation of trypsin with PVC affecting the conformation of the protein and binding of the substrate. The complexation brings about a decrease of the Michaelis constant and an increase of the rate of the biocatalyst interaction with the substrate. It is found that the activity of trypsin depends on the ratio of the enzyme to the substrate. The complexation of trypsin to poly-N-vinylcaprolactam can have influence on the enzymatic activity of the protein at temperatures above LCST, as well as on trypsin trapping in the precipitating polymer. It is noted that, when one determines the enzyme activity by spectral methods, it is necessary to take into account the possibility of complex formation of the polymer with another substance in the reaction system, which can cause errors.Показано, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»ΠΈ- N -Π²ΠΈΠ½ΠΈΠ»ΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚Π°ΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π° субстрата Π±Π΅Π½Π·ΠΎΠΈΠ»-Π°Ρ€Π³ΠΈΠ½ΠΈΠ½ ΠΏΠ°Ρ€Π°-Π½ΠΈΡ‚Ρ€ΠΎΠ°Π½ΠΈΠ»ΠΈΠ΄Π° трипсином ΠΏΡ€ΠΈ 250Π‘. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ эффСкт являСтся слСдствиСм комплСксообразования Π±Π΅Π»ΠΊΠ° с ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠΌ, Π²Π»ΠΈΡΡŽΡ‰Π΅Π³ΠΎ Π½Π° ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° ΠΈ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ сниТСниС константы ΠœΠΈΡ…Π°ΡΠ»ΠΈΡΠ° ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Vmax

    ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ D,L-Π»Π°ΠΊΡ‚ΠΈΠ΄Π° Π² присутствии полиэфирполиола Boltornβ„’

    Get PDF
    Objects. To synthesize monodisperse biodegradable hyperbranched polymers based on D,L-lactide in the presence of Boltornβ„’ H30 polyester polyol as a macroinitiator.Methods. 1H and 13C nuclear magnetic resonance (NMR) spectroscopy was used to study the chemical structure of the Boltornβ„’ H30 polyester polyol and (Boltornβ„’ H30)-PDLA hyperbranched copolymers. The molecular weight distribution of the polymers was studied by gel permeation chromatography (GPC). In order to study the thermal stability of Boltornβ„’ H30 polyester polyol, thermogravimetric analysis (TGA) was used. Polymerization of D,L-lactide was carried out in a block in the presence of Boltornβ„’ H30 polyester polyol.Results. The degree of branching of Boltornβ„’ H30 polyester polyol was calculated from NMR data, while the TGA method was used to determine the upper operational temperature range. The polymerization of D,L-lactide in the presence of Boltornβ„’ H30 polyester polyol used as a macroinitiator was studied. The molecular weight characteristics of the obtained copolymers were studied by NMR and GPC.Conclusions. Optimum conditions were determined for the polymerization of D,L-lactide when using Boltornβ„’ H30 polyester polyol as a macroinitiator. The possibility of synthesizing narrowly dispersed hyperbranched polymers (Boltornβ„’ H30)-PDLA under the described conditions was demonstrated.Π¦Π΅Π»ΠΈ. Π‘ΠΈΠ½Ρ‚Π΅Π· узкодиспСрсных Π±ΠΈΠΎΡ€Π°Π·Π»Π°Π³Π°Π΅ΠΌΡ‹Ρ… свСрхразвСтвлСнных ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π½Π° основС D,L-Π»Π°ΠΊΡ‚ΠΈΠ΄Π° Π² присутствии полиэфирполиола Boltornβ„’ H30 Π² качСствС ΠΌΠ°ΠΊΡ€ΠΎΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π°.ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Для исслСдования химичСской структуры полиэфирполиола Boltornβ„’ H30 ΠΈ свСрхразвСтвлСнных сополимСров (Boltornβ„’ H30)-PDLA использовали 1H ΠΈ 13Π‘ ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΡΠΊΠΎΠΏΠΈΡŽ ядСрного ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ рСзонанса (ЯМР). ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-массовоС распрСдСлСниС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² исслСдовали ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ гСль-ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‰Π΅ΠΉ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (Π“ΠŸΠ₯). Для исслСдования тСрмичСской ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ полиэфирполиола Boltornβ„’ H30 примСняли ΠΌΠ΅Ρ‚ΠΎΠ΄ тСрмогравимСтричСского Π°Π½Π°Π»ΠΈΠ·Π° (ВГА). ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡŽ D,L-Π»Π°ΠΊΡ‚ΠΈΠ΄Π° Π² присутствии полиэфирполиола Boltornβ„’ H30 ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² Π±Π»ΠΎΠΊΠ΅.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. По Π΄Π°Π½Π½Ρ‹ΠΌ ЯМР Π±Ρ‹Π»Π° рассчитана ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ развСтвлСнности полиэфирполиола Boltornβ„’ H30. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ВГА ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ Π²Π΅Ρ€Ρ…Π½ΠΈΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Ρ€Π°Π±ΠΎΡ‚Ρ‹ с полиэфирполиолом Boltornβ„’ H30. ИсслСдована полимСризация D,L-Π»Π°ΠΊΡ‚ΠΈΠ΄Π° Π² присутствии полиэфирполиола Boltornβ„’ H30 Π² качСствС ΠΌΠ°ΠΊΡ€ΠΎΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π°. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎΠΌΠ°ΡΡΠΎΠ²Ρ‹Π΅ характСристики ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… сополимСров исслСдованы ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ЯМР ΠΈ Π“ΠŸΠ₯.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠŸΠΎΠ΄ΠΎΠ±Ρ€Π°Π½Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ условия ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ D,L-Π»Π°ΠΊΡ‚ΠΈΠ΄Π° Π² присутствии полиэфирполиола Boltornβ„’ H30 Π² качСствС ΠΌΠ°ΠΊΡ€ΠΎΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π°. Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ синтСза узкодиспСрсных свСрхразвСтвлСнных ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² (Boltornβ„’ H30)-PDLA Π² этих условиях.

    Π‘Π˜ΠžΠ ΠΠ—Π›ΠΠ“ΠΠ•ΠœΠ«Π• ΠŸΠžΠ›Π˜ΠœΠ•Π ΠΠ«Π• ΠœΠΠ’Π•Π Π˜ΠΠ›Π« Π”Π›Π― ΠœΠ•Π”Π˜Π¦Π˜ΠΠ«: ОВ Π˜ΠœΠŸΠ›ΠΠΠ’Π К ΠžΠ Π“ΠΠΠ£

    Get PDF
    Development of modern medical technologies would be impossible without the application of various materials with special properties. Over the last decade there has been a marked increase in interest in biodegradable materials for use in medicine and other areas of the national economy. In medicine, biodegradable polymers offer great potential for controlled drug delivery and wound management (e.g., adhesives, sutures and surgical meshes), for orthopedic devices (screws, pins and rods), nonwoven materials and scaffolds for tissue engineering. Among the family of biodegradable polyesters the most extensively investigated and the most widely used polymers are poly(Ξ±-hydroxyacid)s: polylactide (i.e. PLA), polyglycolide (i.e. PGA), poly-Ξ΅-caprolactone (PCL), polydioxanone and their copolymers. Controlling the molecular and supramolecular structure of biodegradable polymers allows tuning the physico-chemical and mechanical characteristics of the materials as well as their degradation kinetics. This enables selecting the optimal composition and structure of the material for the development of a broad range of biomedical products. Introduction of various functional fillers such as calcium phosphates allows creating bioactive composite materials with improved mechanical properties. To manufacture the highly dispersed biomedical materials for regenerative medicine electrospinning and freeze-drying are employed. Varying the technological parameters of the process enables to produce materials and devices with predetermined pore sizes and various mechanical properties. In order to increase the effectiveness of a great number of drugs the perspective approach is their inclusion into nanosized polymer micelles based on amphiphilic block copolymers of lactide and ethylene oxide. Different crystallization behavior of the lactide blocks and controlled regulation of their length allows producing micelles with various sizes and morphology. In this article we have attempted to provide an overview of works that are under way in the area of biodegradable polymers research and development in our group.Π Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ соврСмСнных мСдицинских Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π±Ρ‹Π»ΠΎ Π±Ρ‹ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π±Π΅Π· примСнСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² со ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ свойствами. Π’ послСднСС дСсятилСтиС Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ всС Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΠΉ интСрСс ΠΊ Π±ΠΈΠΎΡ€Π°Π·Π»Π°Π³Π°Π΅ΠΌΡ‹ΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°ΠΌ для использования Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… областях Π½Π°Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ хозяйства. БинтСтичСскиС Π±ΠΈΠΎΡ€Π°Π·Π»Π°Π³Π°Π΅ΠΌΡ‹Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅ для создания систСм ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ доставки лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², ΡˆΠΎΠ²Π½Ρ‹Ρ… хирургичСских ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², для изготовлСния ортопСдичСских ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ (Π²ΠΈΠ½Ρ‚Ρ‹, ΡˆΡ‚ΠΈΡ„Ρ‚Ρ‹, стСрТни), Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅Ρ‚ΠΊΠ°Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ матриксов для Ρ‚ΠΊΠ°Π½Π΅Π²ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ. НаиболСС вострСбованными ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ для изготовлСния ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ биомСдицинского назначСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ слоТныС полиэфиры Ξ±-гидроксикислот: ΠΏΠΎΠ»ΠΈΠ»Π°ΠΊΡ‚ΠΈΠ΄, ΠΏΠΎΠ»ΠΈΠ³Π»ΠΈΠΊΠΎΠ»ΠΈΠ΄, ΠΏΠΎΠ»ΠΈ(Ξ΅-ΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½), полидиоксанон, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡ… сополимСры. Π Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ молСкулярной ΠΈ надмолСкулярной структуры Π±ΠΈΠΎΡ€Π°Π·Π»Π°Π³Π°Π΅ΠΌΡ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² позволяСт ΡƒΠΏΡ€Π°Π²Π»ΡΡ‚ΡŒ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСскими ΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСскими характСристиками ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΎΠΉ ΠΈΡ… Π±ΠΈΠΎΠ΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ. Π­Ρ‚ΠΎ Π΄Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ΄Π±ΠΈΡ€Π°Ρ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ состав ΠΈ структуру ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ ассортимСнта биомСдицинских ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π½Π°ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»Π΅ΠΉ, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ ΠΊΠ°Π»ΡŒΡ†ΠΈΠΉ-фосфаты, Π² структуру ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° позволяСт ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ Π±ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ с ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½Ρ‹ΠΌΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСскими характСристиками. Для получСния высокодиспСрсных биомСдицинских ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² для Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ Ρ‚Π°ΠΊΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΊΠ°ΠΊ элСктроформованиС ΠΈ лиофилизация. Π’Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ тСхнологичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² процСсса обСспСчиваСт Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ изготовлСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ с Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ ΠΏΠΎΡ€ ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ мСханичСскими характСристиками. ΠŸΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ дСйствия ΠΌΠ½ΠΎΠ³ΠΈΡ… лСкарствСнных срСдств ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡƒΡ‚Π΅ΠΌ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ ΠΈΡ… Π² Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ ΠΌΠΈΡ†Π΅Π»Π»Ρ‹ Π½Π° основС Π°ΠΌΡ„ΠΈΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π±Π»ΠΎΡ‡Π½Ρ‹Ρ… сополимСров Π»Π°ΠΊΡ‚ΠΈΠ΄Π° ΠΈ этилСноксида. Различная ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π±Π»ΠΎΠΊΠΎΠ² Π»Π°ΠΊΡ‚ΠΈΠ΄Π° ΠΊ кристаллизации ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ Π±Π»ΠΎΠΊΠΎΠ² позволяСт ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ ΠΌΠΈΡ†Π΅Π»Π»Ρ‹ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ ΠΈ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ. Π’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΡ‹ ΠΏΠΎΠΏΡ‹Ρ‚Π°Π»ΠΈΡΡŒ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΠΎΠ±Π·ΠΎΡ€ основных Ρ€Π°Π±ΠΎΡ‚, ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΡ‹Ρ… Π² нашСм Π½Π°ΡƒΡ‡Π½ΠΎΠΌ ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π΅ Π² области Π±ΠΈΠΎΡ€Π°Π·Π»Π°Π³Π°Π΅ΠΌΡ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ²

    НовыС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ ΠŸΠΠ’ Π½Π° основС Ρ€Π°Π·Π²Π΅Ρ‚Π²Π»Π΅Π½Π½Ρ‹Ρ… силатрансодСрТащих полиэфиров

    Get PDF
    Objectives. Biologically active polymeric surfactants are a new promising class of macromolecules that can find application in medicine, cosmetology, and agriculture. In this study, a number of new biologically active amphiphilic polymers based on branched silatrane-containing polyesters and polyethers were obtained, and their surface-active properties were investigated.Methods. The branched polymers were represented by polyethers and polyesters, obtained respectively via the anionic polymerization of 1,2-epoxypropanol or a combination of equilibrium polycondensation and ring opening polymerization. The polymers were modified with 3-isocyanopropylsilatrane and trimethylethoxysilane to obtain the amphiphilic compounds containing silatrane groups bonded to the polymer backbone by the urethane bond. The structure of the synthesized polymer silatranes was confirmed via nuclear magnetic resonance spectroscopy and gel permeation chromatography. The surface active properties of all the copolymers obtained were investigated in connection with their obvious amphiphilicity. In particular, the formation of micelles in aqueous solutions is such a property. The critical micelle concentrations were determined by a method of quenching the fluorescence of the polymers.Results. It was shown that the values of the critical micelle concentrations and the hydrophilic-lipophilic balance values of polymers determined by the Griffin equation correlate well with each other. A linear relationship between the hydrophilic-lipophilic balance and the critical micelle concentrations was established. At the same time, polyether-based polymers generally showed higher critical micelle concentrations than polyester-based polymers, although the hydrophilic-lipophilic balance values for polymers of different series, but with close degrees of substitution, were close. It was found that the use of all synthesized polymers as stabilizers of direct and reverse emulsions leads to an increase in the aggregative stability of both types of emulsions. The stability of emulsions depended both on the degree of substitution of peripheral hydroxyl groups of polymers by silatranes and on the molecular weight and structure of the branched block of polymers. The stability of direct emulsions increased for all polymers, while that of inverse emulsions decreased with an increasing degree of substitution of hydroxyl groups by silatranes. The increase of the branched block molecular weight led to an increase of droplet sizes for both direct and inverse emulsions. The smallest droplet size for direct and inverse emulsions was obtained using polymers with low molecular weight branched polyester blocks as surfactants.Conclusions. The results obtained prove the possibility of creating polymer surfactants containing silatrane groups. By varying the structure of the polymer, its molecular weight and the degree of substitution of peripheral functional groups, it is possible to obtain surfactants with desired surface properties.Π¦Π΅Π»ΠΈ. БиологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ ΠŸΠΠ’ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½ΠΎΠ²Ρ‹ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±Π΅Ρ‰Π°ΡŽΡ‰ΠΈΠΌ классом ΠΌΠ°ΠΊΡ€ΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ», ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅, космСтологии, сСльском хозяйствС. Π’ Π΄Π°Π½Π½ΠΎΠΌ исслСдовании Π±Ρ‹Π» ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ ряд Π½ΠΎΠ²Ρ‹Ρ… Π°ΠΌΡ„ΠΈΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π½Π° основС Ρ€Π°Π·Π²Π΅Ρ‚Π²Π»Π΅Π½Π½Ρ‹Ρ… силатран-содСрТащих полиэфиров ΠΈ исслСдованы ΠΈΡ… повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ свойства.ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π Π°Π·Π²Π΅Ρ‚Π²Π»Π΅Π½Π½Ρ‹Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ Π±Ρ‹Π»ΠΈ прСдставлСны простыми ΠΈ слоТными полиэфирами, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ соотвСтствСнно способом Π°Π½ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ 1,2-эпоксипропанола Π»ΠΈΠ±ΠΎ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠ΅ΠΉ равновСсной поликондСнсации ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ с раскрытиСм Ρ†ΠΈΠΊΠ»Π°. Для получСния Π°ΠΌΡ„ΠΈΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… соСдинСний, содСрТащих силатрановыС Π³Ρ€ΡƒΠΏΠΏΡ‹, связанныС с ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΌ каркасом ΡƒΡ€Π΅Ρ‚Π°Π½ΠΎΠ²ΠΎΠΉ связью, ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ Π±Ρ‹Π»ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ 3-изоцианопропилсилатраном ΠΈ тримСтилэтоксисиланом. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° синтСзированных ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… силатранов Π±Ρ‹Π»Π° ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ЯМР-спСктроскопии ΠΈ гСль-ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‰Π΅ΠΉ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ. ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚Π½ΠΎ-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ свойства всСх ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… сополимСров Π±Ρ‹Π»ΠΈ исслСдованы Π² связи с ΠΈΡ… ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎΠΉ Π°ΠΌΡ„ΠΈΡ„ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ, Π² частности, Ρ‚Π°ΠΊΠΈΠΌ свойством являСтся ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΈΡ†Π΅Π»Π» Π² Π²ΠΎΠ΄Π½Ρ‹Ρ… растворах. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ гашСния флуорСсцСнции ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π±Ρ‹Π»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ критичСских ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ мицСллообразования (ККМ).Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Показано, Ρ‡Ρ‚ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ККМ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ Π² соотвСтствиС с ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π“Ρ€ΠΈΡ„Ρ„ΠΈΠ½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎ-Π»ΠΈΠΏΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ баланса (Π“Π›Π‘) для ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΡƒΡŽΡ‚, ΠΏΡ€ΠΈ этом Π±Ρ‹Π»Π° установлСна линСйная Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹ΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ. ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ Π½Π° основС простых полиэфиров Π² Ρ†Π΅Π»ΠΎΠΌ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π»ΠΈ Π±ΠΎΠ»Π΅Π΅ высокиС значСния ККМ, Ρ‡Π΅ΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ Π½Π° основС слоТных полиэфиров, хотя Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π“Π›Π‘ для ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² Ρ€Π°Π·Π½Ρ‹Ρ… сСрий, Π½ΠΎ с Π±Π»ΠΈΠ·ΠΊΠΈΠΌΠΈ стСпСнями замСщСния Π±Ρ‹Π»ΠΈ Π±Π»ΠΈΠ·ΠΊΠΈ. Π‘Ρ‹Π»ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ использованиС всСх синтСзированных ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π² качСствС стабилизаторов прямых ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡΠΌΡƒΠ»ΡŒΡΠΈΠΉ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ Π°Π³Ρ€Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ устойчивости ΡΠΌΡƒΠ»ΡŒΡΠΈΠΉ ΠΎΠ±ΠΎΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ². Π£ΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΡΠΌΡƒΠ»ΡŒΡΠΈΠΉ зависСла ΠΊΠ°ΠΊ ΠΎΡ‚ стСпСни замСщСния ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΠΉΠ½Ρ‹Ρ… Π³ΠΈΠ΄Ρ€ΠΎΠΊΡΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² силатранами, Ρ‚Π°ΠΊ ΠΈ ΠΎΡ‚ молСкулярной массы ΠΈ строСния Ρ€Π°Π·Π²Π΅Ρ‚Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ° ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ². Для всСх ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ прямых ΡΠΌΡƒΠ»ΡŒΡΠΈΠΉ возрастала, Π° ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡΠΌΡƒΠ»ΡŒΡΠΈΠΉ – сниТалась с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ стСпСни замСщСния Π³ΠΈΠ΄Ρ€ΠΎΠΊΡΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ силатранами. Π‘ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ молСкулярной массы Ρ€Π°Π·Π²Π΅Ρ‚Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ° Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ капСль ΠΊΠ°ΠΊ прямых, Ρ‚Π°ΠΊ ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡΠΌΡƒΠ»ΡŒΡΠΈΠΉ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π»ΠΈΡΡŒ. НаимСньший Ρ€Π°Π·ΠΌΠ΅Ρ€ капСль прямой ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ ΡΠΌΡƒΠ»ΡŒΡΠΈΠΈ Π±Ρ‹Π» ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ ΠΏΡ€ΠΈ использовании Π² качСствС ΠŸΠΠ’ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ² с низкомолСкулярными Ρ€Π°Π·Π²Π΅Ρ‚Π²Π»Π΅Π½Π½Ρ‹ΠΌΠΈ Π±Π»ΠΎΠΊΠ°ΠΌΠΈ Π½Π° основС слоТных эфиров.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ создания ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠŸΠΠ’, содСрТащих силатрановыС Π³Ρ€ΡƒΠΏΠΏΡ‹. Π’Π°Ρ€ΡŒΠΈΡ€ΡƒΡ строСниС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°, Π΅Π³ΠΎ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΡƒΡŽ массу ΠΈ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ замСщСния ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΠΉΠ½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠŸΠΠ’ с Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌΠΈ повСрхностными свойствами

    Π€Π˜Π—Π˜ΠšΠž-Π₯Π˜ΠœΠ˜Π§Π•Π‘ΠšΠ˜Π• Π‘Π’ΠžΠ™Π‘Π’Π’Π Π‘Π˜ΠžΠ ΠΠ—Π›ΠΠ“ΠΠ•ΠœΠžΠ“Πž Π‘Π’Π•Π Π₯Π ΠΠ—Π’Π•Π’Π’Π›Π•ΠΠΠžΠ“Πž ΠŸΠžΠ›Π˜Π­Π€Π˜Π ΠŸΠžΠ›Π˜ΠžΠ›Π НА ΠžΠ‘ΠΠžΠ’Π• 2,2-Π‘Π˜Π‘(ΠœΠ•Π’Π˜Π›ΠžΠ›)ΠŸΠ ΠžΠŸΠ˜ΠžΠΠžΠ’ΠžΠ™ ΠšΠ˜Π‘Π›ΠžΠ’Π«

    Get PDF
    Synthetic surfactants have a wide application in various areas from medicine to agriculture, with biodegradable surfactants holding the greatest promise. Promising compounds for the synthesis of such surfactants are polyethylene oxide and polymers are the poly(Ξ±-hydroxyacid)s: polylactide (i.e. PLA), polyglycolide (i.e. PGA), poly-Ξ΅-caprolactone (PCL), polyhydroxybutyrate (PHB) and their copolymers. Because the biodegradation of polymeric surfactants yields natural metabolites, their medical and biotechnological applications are most attractive. A number of studies shows advantages of branched polymer surfactants compared linear surfactants, however, systematic studies of the correlation between the branched structures of amphiphilic copolymers and their surface activities are absent. Hyperbranched polyester polyol based on 2,2-bis(methylol)propionic acid are widely used as modifiers of polymeric materials (for example, in the manufacture of paintwork materials), additives for polymers to improve extrusion and also as nanocontainers for targeted drug delivery. In the present study the colloidal chemical properties of the polyether polyol 2,2-bis (methylol) propionic acid of the fourth pseudo generation (trade name Boltorn H40) were studied and it was shown that they reduce the interfacial tension at the hydrocarbon solution of surfactant/water to low.БинтСтичСскиС повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ вСщСства ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² самых Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… отраслях - ΠΎΡ‚ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρ‹ Π΄ΠΎ сСльского хозяйства, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΉ интСрСс ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ биодСструктируСмыС ΠŸΠΠ’. ΠŸΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ соСдинСниями для синтСза Ρ‚Π°ΠΊΠΈΡ… ΠŸΠΠ’ ΡΠ²Π»ΡΡŽΡ‚ΡΡ полиэтилСноксид ΠΈ слоТныС полиэфиры Ξ±-гидроксикислот: ΠΏΠΎΠ»ΠΈΠ»Π°ΠΊΡ‚ΠΈΠ΄, ΠΏΠΎΠ»ΠΈΠ³Π»ΠΈΠΊΠΎΠ»ΠΈΠ΄, ΠΏΠΎΠ»ΠΈ(Ξ΅-ΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½), полигидроксибутират, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡ… сополимСры. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°ΠΌΠΈ дСструкции Ρ‚Π°ΠΊΠΈΡ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠŸΠΠ’ ΡΠ²Π»ΡΡŽΡ‚ΡΡ СстСствСнныС ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚Ρ‹, ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅ ΠΈ Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ довольно пСрспСктивно. Π’ рядС Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ прСимущСства ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… свСрхразвСтвлСнных ΠŸΠΠ’ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌΠΈ ΠŸΠΠ’, ΠΎΠ΄Π½Π°ΠΊΠΎ систСматичСскиС исслСдования взаимосвязи структуры Π°ΠΌΡ„ΠΈΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… свСрхразвСтвлСнных ΠŸΠΠ’ с ΠΈΡ… повСрхностной Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚. Π‘Π²Π΅Ρ€Ρ…Ρ€Π°Π·Π²Π΅Ρ‚Π²Π»Π΅Π½Π½Ρ‹Π΅ Π±ΠΈΠΎΡ€Π°Π·Π»Π°Π³Π°Π΅ΠΌΡ‹Π΅ полиэфирполиолы Π½Π° основС 2,2-бис(ΠΌΠ΅Ρ‚ΠΈΠ»ΠΎΠ»)ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² качСствС ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠ² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΡ€ΠΈ производствС лакокрасочных ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ²), Π΄ΠΎΠ±Π°Π²ΠΎΠΊ ΠΊ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°ΠΌ для ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ экструзии, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² качСствС Π½Π°Π½ΠΎΠΊΠΎΠ½Ρ‚Π΅ΠΉΠ½Π΅Ρ€ΠΎΠ² для адрСсной доставки лСкарствСнных соСдинСний. Π’ настоящСй Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½ΠΎ-химичСскиС свойства полиэфирполиола 2,2-бис(ΠΌΠ΅Ρ‚ΠΈΠ»ΠΎΠ»)ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ псСвдогСнСрации (Ρ‚ΠΎΡ€Π³ΠΎΠ²ΠΎΠ΅ имя Boltorn H40) ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½ΠΎΠ΅ соСдинСниС ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ свойствами ΠΈ сниТаСт ΠΌΠ΅ΠΆΡ„Π°Π·Π½ΠΎΠ΅ натяТСниС Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΉ раствор ΠŸΠΠ’/Π²ΠΎΠ΄Π° Π΄ΠΎ Π½ΠΈΠ·ΠΊΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ

    SILATRANE-CONTAINING POLYMETHACRYLATES

    Get PDF
    The possibility of synthesizing silatrane-containing polymers was investigated using three different synthetic methods: the formation of silatrane fragments from polymers with trialkoxysilyl groups, the copolymerization of silatrane-containing monomers, and the reaction of silatranes with functional copolymers. The obtained polymethacrylate copolymers were characterized using gel permeation chromatography, IR and NMR spectroscopy. It was shown that depending on the synthesis scheme used, polymers were obtained in the form of three-dimensional structures or soluble products. It was established that the molecular weight of the synthesized polymers depended significantly on both the content of silatrane fragments and the synthesis technique used. It was shown that the modification of linear carboxyl-containing copolymers by silatranes allows the synthesis of high-molecular polymers with a high content of silatrane fragments. For the synthesized polymers, thermal properties were investigated, and the hydrophobicity of the surface of polymer films was also evaluated. It was found that all the studied polymers did not have clear melting and crystallization temperatures. The polymers were stable in an inert atmosphere up to 270-280 Β°C, whereas in air they decomposed at lower temperatures with the restructuring of the macromolecular skeleton and the formation of highly heat-resistant silicone structures. An increase in the content of silatrane moieties in the copolymers led to an increase in the hydrophilicity of polymers

    The effect of poly-N-vinylcaprolactam on enzymatic activity of trypsin

    No full text
    It is known that some synthetic polymers can enhance the stability of some proteins including enzymes against thermal denaturation. An important example of such behaviour is poly-N-vinylcaprolactam (PVC), although the mechanism of this phenomenon is not fully understood. This paper deals with this problem with the system PVC-trypsin as an example. PVC is a polymer, which has lower critical solution temperature (LCST) in aqueous solution. It is shown that the rate of enzymatic hydrolysis of a substrate – benzoyl arginine – n-nitroanilide (BAPNA) – with trypsin in aqueous solutions of PVC at 25ΒΊC is higher than that in the buffer solution. It is supposed that this effect is a consequence of the complex formation of trypsin with PVC affecting the conformation of the protein and binding of the substrate. The complexation brings about a decrease of the Michaelis constant and an increase of the rate of the biocatalyst interaction with the substrate. It is found that the activity of trypsin depends on the ratio of the enzyme to the substrate. The complexation of trypsin to poly-N-vinylcaprolactam can have influence on the enzymatic activity of the protein at temperatures above LCST, as well as on trypsin trapping in the precipitating polymer. It is noted that, when one determines the enzyme activity by spectral methods, it is necessary to take into account the possibility of complex formation of the polymer with another substance in the reaction system, which can cause errors

    BIODEGRADABLE POLYMER MATERIALS FOR MEDICAL APPLICATIONS: FROM IMPLANTS TO ORGANS

    Get PDF
    Development of modern medical technologies would be impossible without the application of various materials with special properties. Over the last decade there has been a marked increase in interest in biodegradable materials for use in medicine and other areas of the national economy. In medicine, biodegradable polymers offer great potential for controlled drug delivery and wound management (e.g., adhesives, sutures and surgical meshes), for orthopedic devices (screws, pins and rods), nonwoven materials and scaffolds for tissue engineering. Among the family of biodegradable polyesters the most extensively investigated and the most widely used polymers are poly(Ξ±-hydroxyacid)s: polylactide (i.e. PLA), polyglycolide (i.e. PGA), poly-Ξ΅-caprolactone (PCL), polydioxanone and their copolymers. Controlling the molecular and supramolecular structure of biodegradable polymers allows tuning the physico-chemical and mechanical characteristics of the materials as well as their degradation kinetics. This enables selecting the optimal composition and structure of the material for the development of a broad range of biomedical products. Introduction of various functional fillers such as calcium phosphates allows creating bioactive composite materials with improved mechanical properties. To manufacture the highly dispersed biomedical materials for regenerative medicine electrospinning and freeze-drying are employed. Varying the technological parameters of the process enables to produce materials and devices with predetermined pore sizes and various mechanical properties. In order to increase the effectiveness of a great number of drugs the perspective approach is their inclusion into nanosized polymer micelles based on amphiphilic block copolymers of lactide and ethylene oxide. Different crystallization behavior of the lactide blocks and controlled regulation of their length allows producing micelles with various sizes and morphology. In this article we have attempted to provide an overview of works that are under way in the area of biodegradable polymers research and development in our group

    Novel polymer surfactants based on the branched silatrane-containing polyesters and polyethers

    Get PDF
    Objectives. Biologically active polymeric surfactants are a new promising class of macromolecules that can find application in medicine, cosmetology, and agriculture. In this study, a number of new biologically active amphiphilic polymers based on branched silatrane-containing polyesters and polyethers were obtained, and their surface-active properties were investigated.Methods. The branched polymers were represented by polyethers and polyesters, obtained respectively via the anionic polymerization of 1,2-epoxypropanol or a combination of equilibrium polycondensation and ring opening polymerization. The polymers were modified with 3-isocyanopropylsilatrane and trimethylethoxysilane to obtain the amphiphilic compounds containing silatrane groups bonded to the polymer backbone by the urethane bond. The structure of the synthesized polymer silatranes was confirmed via nuclear magnetic resonance spectroscopy and gel permeation chromatography. The surface active properties of all the copolymers obtained were investigated in connection with their obvious amphiphilicity. In particular, the formation of micelles in aqueous solutions is such a property. The critical micelle concentrations were determined by a method of quenching the fluorescence of the polymers.Results. It was shown that the values of the critical micelle concentrations and the hydrophilic-lipophilic balance values of polymers determined by the Griffin equation correlate well with each other. A linear relationship between the hydrophilic-lipophilic balance and the critical micelle concentrations was established. At the same time, polyether-based polymers generally showed higher critical micelle concentrations than polyester-based polymers, although the hydrophilic-lipophilic balance values for polymers of different series, but with close degrees of substitution, were close. It was found that the use of all synthesized polymers as stabilizers of direct and reverse emulsions leads to an increase in the aggregative stability of both types of emulsions. The stability of emulsions depended both on the degree of substitution of peripheral hydroxyl groups of polymers by silatranes and on the molecular weight and structure of the branched block of polymers. The stability of direct emulsions increased for all polymers, while that of inverse emulsions decreased with an increasing degree of substitution of hydroxyl groups by silatranes. The increase of the branched block molecular weight led to an increase of droplet sizes for both direct and inverse emulsions. The smallest droplet size for direct and inverse emulsions was obtained using polymers with low molecular weight branched polyester blocks as surfactants.Conclusions. The results obtained prove the possibility of creating polymer surfactants containing silatrane groups. By varying the structure of the polymer, its molecular weight and the degree of substitution of peripheral functional groups, it is possible to obtain surfactants with desired surface properties
    corecore