13 research outputs found
Π‘ΠΠΠΠ’Π ΠΠΠ‘ΠΠΠΠ ΠΠΠ©ΠΠ ΠΠΠΠΠΠΠ’ΠΠΠ ΠΠΠΠ’Π«
The possibility of synthesizing silatrane-containing polymers was investigated using three different synthetic methods: the formation of silatrane fragments from polymers with trialkoxysilyl groups, the copolymerization of silatrane-containing monomers, and the reaction of silatranes with functional copolymers. The obtained polymethacrylate copolymers were characterized using gel permeation chromatography, IR and NMR spectroscopy. It was shown that depending on the synthesis scheme used, polymers were obtained in the form of three-dimensional structures or soluble products. It was established that the molecular weight of the synthesized polymers depended significantly on both the content of silatrane fragments and the synthesis technique used. It was shown that the modification of linear carboxyl-containing copolymers by silatranes allows the synthesis of high-molecular polymers with a high content of silatrane fragments. For the synthesized polymers, thermal properties were investigated, and the hydrophobicity of the surface of polymer films was also evaluated. It was found that all the studied polymers did not have clear melting and crystallization temperatures. The polymers were stable in an inert atmosphere up to 270-280 Β°C, whereas in air they decomposed at lower temperatures with the restructuring of the macromolecular skeleton and the formation of highly heat-resistant silicone structures. An increase in the content of silatrane moieties in the copolymers led to an increase in the hydrophilicity of polymers.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠΈΠ»Π°ΡΡΠ°Π½ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΡΠ΅Ρ
ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ: ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΈΠ»Π°ΡΡΠ°Π½ΠΎΠ²ΡΡ
ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ² ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Ρ ΡΡΠΈΠ°Π»ΠΊΠΎΠΊΡΠΈΡΠΈΠ»ΠΈΠ»ΡΠ½ΡΠΌΠΈ Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ, ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΡ ΡΠΈΠ»Π°ΡΡΠ°Π½ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΠΌΠΎΠ½ΠΎΠΌΠ΅ΡΠΎΠ² ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΡΠΏΠΎΡΠΎΠ±Π½ΡΡ
ΡΠΈΠ»Π°ΡΡΠ°Π½ΠΎΠ² Ρ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΌΠΈ ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°ΠΌΠΈ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°ΠΊΡΠΈΠ»Π°ΡΠ½ΡΠ΅ ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ Π±ΡΠ»ΠΈ ΠΎΡ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π½Ρ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π³Π΅Π»Ρ-ΠΏΡΠΎΠ½ΠΈΠΊΠ°ΡΡΠ΅ΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠ΅ΠΉ, ΠΠ- ΠΈ Π―ΠΠ -ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΠΎΠΉ ΡΡ
Π΅ΠΌΡ ΡΠΈΠ½ΡΠ΅Π·Π° ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ Π±ΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π² Π²ΠΈΠ΄Π΅ ΡΠ°ΡΡΠΈΡΠ½ΠΎ ΡΡΠΈΡΡΡ
ΠΈΠ»ΠΈ ΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ². Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ ΠΌΠ°ΡΡΠ° ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π·Π°Π²ΠΈΡΠ΅Π»Π° ΠΊΠ°ΠΊ ΠΎΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π² Π½ΠΈΡ
ΡΠΈΠ»Π°ΡΡΠ°Π½ΠΎΠ²ΡΡ
ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ², ΡΠ°ΠΊ ΠΈ ΠΎΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠΈΠ½ΡΠ΅Π·Π°. Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ
ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² ΡΠΈΠ»Π°ΡΡΠ°Π½Π°ΠΌΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°ΡΡ Π²ΡΡΠΎΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ Ρ Π²ΡΡΠΎΠΊΠΈΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΡΠΈΠ»Π°ΡΡΠ°Π½ΠΎΠ²ΡΡ
ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ². ΠΠ»Ρ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Π±ΡΠ»ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΡΠ΅Π½Π΅Π½Π° Π³ΠΈΠ΄ΡΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
ΠΏΠ»Π΅Π½ΠΎΠΊ. ΠΡΠ»ΠΎ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π²ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ Π½Π΅ ΠΈΠΌΠ΅Π»ΠΈ ΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ ΠΏΠ»Π°Π²Π»Π΅Π½ΠΈΡ ΠΈ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠΈ. ΠΠΎΠ»ΠΈΠΌΠ΅ΡΡ Π±ΡΠ»ΠΈ ΡΡΠ°Π±ΠΈΠ»ΡΠ½Ρ Π² ΠΈΠ½Π΅ΡΡΠ½ΠΎΠΉ Π°ΡΠΌΠΎΡΡΠ΅ΡΠ΅ Π΄ΠΎ 270-280 Β°Π‘, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π½Π° Π²ΠΎΠ·Π΄ΡΡ
Π΅ ΠΎΠ½ΠΈ ΡΠ°Π·Π»Π°Π³Π°Π»ΠΈΡΡ ΠΏΡΠΈ Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΈΡ
ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°Ρ
Ρ ΠΏΠ΅ΡΠ΅ΡΡΡΠΎΠΉΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΊΠ΅Π»Π΅ΡΠ° ΠΈ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π²ΡΡΠΎΠΊΠΎΡΠ΅ΡΠΌΠΎΡΡΠΎΠΉΠΊΠΈΡ
ΠΊΡΠ΅ΠΌΠ½ΠΈΠΉΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΡΡΠΊΡΡΡ. Π£Π²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΡΠΈΠ»Π°ΡΡΠ°Π½ΠΎΠ²ΡΡ
ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ² Π² ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°Ρ
ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ Π³ΠΈΠ΄ΡΠΎΡΠΈΠ»ΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ²
ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈ- N-Π²ΠΈΠ½ΠΈΠ»ΠΊΠ°ΠΏΡΠΎΠ»Π°ΠΊΡΠ°ΠΌΠ° Π½Π° ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠ²Π½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΡΠΈΠΏΡΠΈΠ½Π°
It is known that some synthetic polymers can enhance the stability of some proteins including enzymes against thermal denaturation. An important example of such behaviour is poly-N-vinylcaprolactam (PVC), although the mechanism of this phenomenon is not fully understood. This paper deals with this problem with the system PVC-trypsin as an example. PVC is a polymer, which has lower critical solution temperature (LCST) in aqueous solution. It is shown that the rate of enzymatic hydrolysis of a substrate β benzoyl arginine β n-nitroanilide (BAPNA) β with trypsin in aqueous solutions of PVC at 25ΒΊC is higher than that in the buffer solution. It is supposed that this effect is a consequence of the complex formation of trypsin with PVC affecting the conformation of the protein and binding of the substrate. The complexation brings about a decrease of the Michaelis constant and an increase of the rate of the biocatalyst interaction with the substrate. It is found that the activity of trypsin depends on the ratio of the enzyme to the substrate. The complexation of trypsin to poly-N-vinylcaprolactam can have influence on the enzymatic activity of the protein at temperatures above LCST, as well as on trypsin trapping in the precipitating polymer. It is noted that, when one determines the enzyme activity by spectral methods, it is necessary to take into account the possibility of complex formation of the polymer with another substance in the reaction system, which can cause errors.ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΠΎΠ»ΠΈ- N -Π²ΠΈΠ½ΠΈΠ»ΠΊΠ°ΠΏΡΠΎΠ»Π°ΠΊΡΠ°ΠΌ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π³ΠΈΠ΄ΡΠΎΠ»ΠΈΠ·Π° ΡΡΠ±ΡΡΡΠ°ΡΠ° Π±Π΅Π½Π·ΠΎΠΈΠ»-Π°ΡΠ³ΠΈΠ½ΠΈΠ½ ΠΏΠ°ΡΠ°-Π½ΠΈΡΡΠΎΠ°Π½ΠΈΠ»ΠΈΠ΄Π° ΡΡΠΈΠΏΡΠΈΠ½ΠΎΠΌ ΠΏΡΠΈ 250Π‘. ΠΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ, ΡΡΠΎ Π½Π°ΠΉΠ΄Π΅Π½Π½ΡΠΉ ΡΡΡΠ΅ΠΊΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π±Π΅Π»ΠΊΠ° Ρ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠΌ, Π²Π»ΠΈΡΡΡΠ΅Π³ΠΎ Π½Π° ΠΊΠΎΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ° ΠΈ Π²ΡΠ·ΡΠ²Π°ΡΡΠ΅Π³ΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΡ ΠΠΈΡ
Π°ΡΠ»ΠΈΡΠ° ΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ Vmax
ΠΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΡ D,L-Π»Π°ΠΊΡΠΈΠ΄Π° Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΏΠΎΠ»ΠΈΠΎΠ»Π° Boltornβ’
Objects. To synthesize monodisperse biodegradable hyperbranched polymers based on D,L-lactide in the presence of Boltornβ’ H30 polyester polyol as a macroinitiator.Methods. 1H and 13C nuclear magnetic resonance (NMR) spectroscopy was used to study the chemical structure of the Boltornβ’ H30 polyester polyol and (Boltornβ’ H30)-PDLA hyperbranched copolymers. The molecular weight distribution of the polymers was studied by gel permeation chromatography (GPC). In order to study the thermal stability of Boltornβ’ H30 polyester polyol, thermogravimetric analysis (TGA) was used. Polymerization of D,L-lactide was carried out in a block in the presence of Boltornβ’ H30 polyester polyol.Results. The degree of branching of Boltornβ’ H30 polyester polyol was calculated from NMR data, while the TGA method was used to determine the upper operational temperature range. The polymerization of D,L-lactide in the presence of Boltornβ’ H30 polyester polyol used as a macroinitiator was studied. The molecular weight characteristics of the obtained copolymers were studied by NMR and GPC.Conclusions. Optimum conditions were determined for the polymerization of D,L-lactide when using Boltornβ’ H30 polyester polyol as a macroinitiator. The possibility of synthesizing narrowly dispersed hyperbranched polymers (Boltornβ’ H30)-PDLA under the described conditions was demonstrated.Π¦Π΅Π»ΠΈ. Π‘ΠΈΠ½ΡΠ΅Π· ΡΠ·ΠΊΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΡ
Π±ΠΈΠΎΡΠ°Π·Π»Π°Π³Π°Π΅ΠΌΡΡ
ΡΠ²Π΅ΡΡ
ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΡΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ D,L-Π»Π°ΠΊΡΠΈΠ΄Π° Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΏΠΎΠ»ΠΈΠΎΠ»Π° Boltornβ’ H30 Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ°ΠΊΡΠΎΠΈΠ½ΠΈΡΠΈΠ°ΡΠΎΡΠ°.ΠΠ΅ΡΠΎΠ΄Ρ. ΠΠ»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΏΠΎΠ»ΠΈΠΎΠ»Π° Boltornβ’ H30 ΠΈ ΡΠ²Π΅ΡΡ
ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΡΡ
ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² (Boltornβ’ H30)-PDLA ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ 1H ΠΈ 13Π‘ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡ ΡΠ΄Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ° (Π―ΠΠ ). ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎ-ΠΌΠ°ΡΡΠΎΠ²ΠΎΠ΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π³Π΅Π»Ρ-ΠΏΡΠΎΠ½ΠΈΠΊΠ°ΡΡΠ΅ΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ (ΠΠΠ₯). ΠΠ»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΏΠΎΠ»ΠΈΠΎΠ»Π° Boltornβ’ H30 ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΡΠ΅ΡΠΌΠΎΠ³ΡΠ°Π²ΠΈΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° (Π’ΠΠ). ΠΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΡ D,L-Π»Π°ΠΊΡΠΈΠ΄Π° Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΏΠΎΠ»ΠΈΠΎΠ»Π° Boltornβ’ H30 ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² Π±Π»ΠΎΠΊΠ΅.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΎ Π΄Π°Π½Π½ΡΠΌ Π―ΠΠ Π±ΡΠ»Π° ΡΠ°ΡΡΡΠΈΡΠ°Π½Π° ΡΡΠ΅ΠΏΠ΅Π½Ρ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΏΠΎΠ»ΠΈΠΎΠ»Π° Boltornβ’ H30. ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ Π’ΠΠ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ Π²Π΅ΡΡ
Π½ΠΈΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΠΉ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ ΡΠ°Π±ΠΎΡΡ Ρ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΏΠΎΠ»ΠΈΠΎΠ»ΠΎΠΌ Boltornβ’ H30. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΡ D,L-Π»Π°ΠΊΡΠΈΠ΄Π° Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΏΠΎΠ»ΠΈΠΎΠ»Π° Boltornβ’ H30 Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ°ΠΊΡΠΎΠΈΠ½ΠΈΡΠΈΠ°ΡΠΎΡΠ°. ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΌΠ°ΡΡΠΎΠ²ΡΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ Π―ΠΠ ΠΈ ΠΠΠ₯.ΠΡΠ²ΠΎΠ΄Ρ. ΠΠΎΠ΄ΠΎΠ±ΡΠ°Π½Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ D,L-Π»Π°ΠΊΡΠΈΠ΄Π° Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΏΠΎΠ»ΠΈΠΎΠ»Π° Boltornβ’ H30 Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ°ΠΊΡΠΎΠΈΠ½ΠΈΡΠΈΠ°ΡΠΎΡΠ°. ΠΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠ·ΠΊΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΡ
ΡΠ²Π΅ΡΡ
ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΡΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² (Boltornβ’ H30)-PDLA Π² ΡΡΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
.
ΠΠΠΠ ΠΠΠΠΠΠΠΠΠ«Π ΠΠΠΠΠΠΠ ΠΠ«Π ΠΠΠ’ΠΠ ΠΠΠΠ« ΠΠΠ― ΠΠΠΠΠ¦ΠΠΠ«: ΠΠ’ ΠΠΠΠΠΠΠ’Π Π ΠΠ ΠΠΠΠ£
Development of modern medical technologies would be impossible without the application of various materials with special properties. Over the last decade there has been a marked increase in interest in biodegradable materials for use in medicine and other areas of the national economy. In medicine, biodegradable polymers offer great potential for controlled drug delivery and wound management (e.g., adhesives, sutures and surgical meshes), for orthopedic devices (screws, pins and rods), nonwoven materials and scaffolds for tissue engineering. Among the family of biodegradable polyesters the most extensively investigated and the most widely used polymers are poly(Ξ±-hydroxyacid)s: polylactide (i.e. PLA), polyglycolide (i.e. PGA), poly-Ξ΅-caprolactone (PCL), polydioxanone and their copolymers. Controlling the molecular and supramolecular structure of biodegradable polymers allows tuning the physico-chemical and mechanical characteristics of the materials as well as their degradation kinetics. This enables selecting the optimal composition and structure of the material for the development of a broad range of biomedical products. Introduction of various functional fillers such as calcium phosphates allows creating bioactive composite materials with improved mechanical properties. To manufacture the highly dispersed biomedical materials for regenerative medicine electrospinning and freeze-drying are employed. Varying the technological parameters of the process enables to produce materials and devices with predetermined pore sizes and various mechanical properties. In order to increase the effectiveness of a great number of drugs the perspective approach is their inclusion into nanosized polymer micelles based on amphiphilic block copolymers of lactide and ethylene oxide. Different crystallization behavior of the lactide blocks and controlled regulation of their length allows producing micelles with various sizes and morphology. In this article we have attempted to provide an overview of works that are under way in the area of biodegradable polymers research and development in our group.Π Π°Π·Π²ΠΈΡΠΈΠ΅ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Π±ΡΠ»ΠΎ Π±Ρ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π±Π΅Π· ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΡΠΎ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ. Π ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ Π΄Π΅ΡΡΡΠΈΠ»Π΅ΡΠΈΠ΅ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ Π²ΡΠ΅ Π²ΠΎΠ·ΡΠ°ΡΡΠ°ΡΡΠΈΠΉ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ ΠΊ Π±ΠΈΠΎΡΠ°Π·Π»Π°Π³Π°Π΅ΠΌΡΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°ΠΌ Π΄Π»Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Π΅ ΠΈ Π΄ΡΡΠ³ΠΈΡ
ΠΎΠ±Π»Π°ΡΡΡΡ
Π½Π°ΡΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ
ΠΎΠ·ΡΠΉΡΡΠ²Π°. Π‘ΠΈΠ½ΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π±ΠΈΠΎΡΠ°Π·Π»Π°Π³Π°Π΅ΠΌΡΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π² ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Π΅ Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌ ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅ΠΌΠΎΠΉ Π΄ΠΎΡΡΠ°Π²ΠΊΠΈ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ², ΡΠΎΠ²Π½ΡΡ
Ρ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ², Π΄Π»Ρ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΎΡΡΠΎΠΏΠ΅Π΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ (Π²ΠΈΠ½ΡΡ, ΡΡΠΈΡΡΡ, ΡΡΠ΅ΡΠΆΠ½ΠΈ), Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π΅ΡΠΊΠ°Π½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΈ ΠΌΠ°ΡΡΠΈΠΊΡΠΎΠ² Π΄Π»Ρ ΡΠΊΠ°Π½Π΅Π²ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠΈΠΈ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²ΠΎΡΡΡΠ΅Π±ΠΎΠ²Π°Π½Π½ΡΠΌΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°ΠΌΠΈ Π΄Π»Ρ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ Π±ΠΈΠΎΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΡΡΡΡ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΡ Ξ±-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠΊΠΈΡΠ»ΠΎΡ: ΠΏΠΎΠ»ΠΈΠ»Π°ΠΊΡΠΈΠ΄, ΠΏΠΎΠ»ΠΈΠ³Π»ΠΈΠΊΠΎΠ»ΠΈΠ΄, ΠΏΠΎΠ»ΠΈ(Ξ΅-ΠΊΠ°ΠΏΡΠΎΠ»Π°ΠΊΡΠΎΠ½), ΠΏΠΎΠ»ΠΈΠ΄ΠΈΠΎΠΊΡΠ°Π½ΠΎΠ½, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΡ
ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ. Π Π΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΈ Π½Π°Π΄ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ Π±ΠΈΠΎΡΠ°Π·Π»Π°Π³Π°Π΅ΠΌΡΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΏΡΠ°Π²Π»ΡΡΡ ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ ΡΠΈΠ·ΠΈΠΊΠΎ-ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΎΠΉ ΠΈΡ
Π±ΠΈΠΎΠ΄Π΅Π³ΡΠ°Π΄Π°ΡΠΈΠΈ. ΠΡΠΎ Π΄Π°Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΠ΄Π±ΠΈΡΠ°ΡΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠΎΡΡΠ°Π² ΠΈ ΡΡΡΡΠΊΡΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π΄Π»Ρ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠΈΡΠΎΠΊΠΎΠ³ΠΎ Π°ΡΡΠΎΡΡΠΈΠΌΠ΅Π½ΡΠ° Π±ΠΈΠΎΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΡ
ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ. ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
Π½Π°ΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»Π΅ΠΉ, ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ ΠΊΠ°Π»ΡΡΠΈΠΉ-ΡΠΎΡΡΠ°ΡΡ, Π² ΡΡΡΡΠΊΡΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΎΠ·Π΄Π°Π²Π°ΡΡ Π±ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Ρ ΡΠ»ΡΡΡΠ΅Π½Π½ΡΠΌΠΈ ΡΠΈΠ·ΠΈΠΊΠΎ-ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ. ΠΠ»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π²ΡΡΠΎΠΊΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΡ
Π±ΠΈΠΎΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π΄Π»Ρ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Ρ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠ°ΠΊΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΊΠ°ΠΊ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΎΡΠΌΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ Π»ΠΈΠΎΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΡ. ΠΠ°ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΈ ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ Ρ Π·Π°Π΄Π°Π½Π½ΡΠΌ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠΌ ΠΏΠΎΡ ΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ. ΠΠΎΠ²ΡΡΠΈΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΌΠ½ΠΎΠ³ΠΈΡ
Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΡΡΠ΅Π΄ΡΡΠ² ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΡΠ΅ΠΌ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΈΡ
Π² Π½Π°Π½ΠΎΡΠ°Π·ΠΌΠ΅ΡΠ½ΡΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΠ΅ ΠΌΠΈΡΠ΅Π»Π»Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π°ΠΌΡΠΈΡΠΈΠ»ΡΠ½ΡΡ
Π±Π»ΠΎΡΠ½ΡΡ
ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Π»Π°ΠΊΡΠΈΠ΄Π° ΠΈ ΡΡΠΈΠ»Π΅Π½ΠΎΠΊΡΠΈΠ΄Π°. Π Π°Π·Π»ΠΈΡΠ½Π°Ρ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ Π±Π»ΠΎΠΊΠΎΠ² Π»Π°ΠΊΡΠΈΠ΄Π° ΠΊ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ Π±Π»ΠΎΠΊΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΠΌΠΈΡΠ΅Π»Π»Ρ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠΌ ΠΈ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΠΌΡ ΠΏΠΎΠΏΡΡΠ°Π»ΠΈΡΡ ΡΠ΄Π΅Π»Π°ΡΡ ΠΎΠ±Π·ΠΎΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΡΠ°Π±ΠΎΡ, ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΡΡ
Π² Π½Π°ΡΠ΅ΠΌ Π½Π°ΡΡΠ½ΠΎΠΌ ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠ²Π΅ Π² ΠΎΠ±Π»Π°ΡΡΠΈ Π±ΠΈΠΎΡΠ°Π·Π»Π°Π³Π°Π΅ΠΌΡΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ²
ΠΠΎΠ²ΡΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΠ΅ ΠΠΠ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΡΡ ΡΠΈΠ»Π°ΡΡΠ°Π½ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΎΠ²
Objectives. Biologically active polymeric surfactants are a new promising class of macromolecules that can find application in medicine, cosmetology, and agriculture. In this study, a number of new biologically active amphiphilic polymers based on branched silatrane-containing polyesters and polyethers were obtained, and their surface-active properties were investigated.Methods. The branched polymers were represented by polyethers and polyesters, obtained respectively via the anionic polymerization of 1,2-epoxypropanol or a combination of equilibrium polycondensation and ring opening polymerization. The polymers were modified with 3-isocyanopropylsilatrane and trimethylethoxysilane to obtain the amphiphilic compounds containing silatrane groups bonded to the polymer backbone by the urethane bond. The structure of the synthesized polymer silatranes was confirmed via nuclear magnetic resonance spectroscopy and gel permeation chromatography. The surface active properties of all the copolymers obtained were investigated in connection with their obvious amphiphilicity. In particular, the formation of micelles in aqueous solutions is such a property. The critical micelle concentrations were determined by a method of quenching the fluorescence of the polymers.Results. It was shown that the values of the critical micelle concentrations and the hydrophilic-lipophilic balance values of polymers determined by the Griffin equation correlate well with each other. A linear relationship between the hydrophilic-lipophilic balance and the critical micelle concentrations was established. At the same time, polyether-based polymers generally showed higher critical micelle concentrations than polyester-based polymers, although the hydrophilic-lipophilic balance values for polymers of different series, but with close degrees of substitution, were close. It was found that the use of all synthesized polymers as stabilizers of direct and reverse emulsions leads to an increase in the aggregative stability of both types of emulsions. The stability of emulsions depended both on the degree of substitution of peripheral hydroxyl groups of polymers by silatranes and on the molecular weight and structure of the branched block of polymers. The stability of direct emulsions increased for all polymers, while that of inverse emulsions decreased with an increasing degree of substitution of hydroxyl groups by silatranes. The increase of the branched block molecular weight led to an increase of droplet sizes for both direct and inverse emulsions. The smallest droplet size for direct and inverse emulsions was obtained using polymers with low molecular weight branched polyester blocks as surfactants.Conclusions. The results obtained prove the possibility of creating polymer surfactants containing silatrane groups. By varying the structure of the polymer, its molecular weight and the degree of substitution of peripheral functional groups, it is possible to obtain surfactants with desired surface properties.Π¦Π΅Π»ΠΈ. ΠΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π°ΠΊΡΠΈΠ²Π½ΡΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΠ΅ ΠΠΠ ΡΠ²Π»ΡΡΡΡΡ Π½ΠΎΠ²ΡΠΌ ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±Π΅ΡΠ°ΡΡΠΈΠΌ ΠΊΠ»Π°ΡΡΠΎΠΌ ΠΌΠ°ΠΊΡΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ», ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠ³ΡΡ Π½Π°ΠΉΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Π΅, ΠΊΠΎΡΠΌΠ΅ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΡΠ΅Π»ΡΡΠΊΠΎΠΌ Ρ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅. Π Π΄Π°Π½Π½ΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ Π±ΡΠ» ΠΏΠΎΠ»ΡΡΠ΅Π½ ΡΡΠ΄ Π½ΠΎΠ²ΡΡ
Π°ΠΌΡΠΈΡΠΈΠ»ΡΠ½ΡΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΡΡ
ΡΠΈΠ»Π°ΡΡΠ°Π½-ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΎΠ² ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΈΡ
ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎ-Π°ΠΊΡΠΈΠ²Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°.ΠΠ΅ΡΠΎΠ΄Ρ. Π Π°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΡΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ Π±ΡΠ»ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΠΏΡΠΎΡΡΡΠΌΠΈ ΠΈ ΡΠ»ΠΎΠΆΠ½ΡΠΌΠΈ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠ°ΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ Π°Π½ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ 1,2-ΡΠΏΠΎΠΊΡΠΈΠΏΡΠΎΠΏΠ°Π½ΠΎΠ»Π° Π»ΠΈΠ±ΠΎ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠ΅ΠΉ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΠΎΠΉ ΠΏΠΎΠ»ΠΈΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΈΠΈ ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ Ρ ΡΠ°ΡΠΊΡΡΡΠΈΠ΅ΠΌ ΡΠΈΠΊΠ»Π°. ΠΠ»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π°ΠΌΡΠΈΡΠΈΠ»ΡΠ½ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΠΈΠ»Π°ΡΡΠ°Π½ΠΎΠ²ΡΠ΅ Π³ΡΡΠΏΠΏΡ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΠΌ ΠΊΠ°ΡΠΊΠ°ΡΠΎΠΌ ΡΡΠ΅ΡΠ°Π½ΠΎΠ²ΠΎΠΉ ΡΠ²ΡΠ·ΡΡ, ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ Π±ΡΠ»ΠΈ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Ρ 3-ΠΈΠ·ΠΎΡΠΈΠ°Π½ΠΎΠΏΡΠΎΠΏΠΈΠ»ΡΠΈΠ»Π°ΡΡΠ°Π½ΠΎΠΌ ΠΈ ΡΡΠΈΠΌΠ΅ΡΠΈΠ»ΡΡΠΎΠΊΡΠΈΡΠΈΠ»Π°Π½ΠΎΠΌ. Π‘ΡΡΡΠΊΡΡΡΠ° ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
ΡΠΈΠ»Π°ΡΡΠ°Π½ΠΎΠ² Π±ΡΠ»Π° ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π° ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ Π―ΠΠ -ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΈ Π³Π΅Π»Ρ-ΠΏΡΠΎΠ½ΠΈΠΊΠ°ΡΡΠ΅ΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ. ΠΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎ-Π°ΠΊΡΠΈΠ²Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π²ΡΠ΅Ρ
ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Π±ΡΠ»ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ Π² ΡΠ²ΡΠ·ΠΈ Ρ ΠΈΡ
ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎΠΉ Π°ΠΌΡΠΈΡΠΈΠ»ΡΠ½ΠΎΡΡΡΡ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΡΠ°ΠΊΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΈΡΠ΅Π»Π» Π² Π²ΠΎΠ΄Π½ΡΡ
ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
. ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ Π³Π°ΡΠ΅Π½ΠΈΡ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Π±ΡΠ»ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΠΌΠΈΡΠ΅Π»Π»ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ (ΠΠΠ).Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΠΠ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΡΠΈΡΡΠΈΠ½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π³ΠΈΠ΄ΡΠΎΡΠΈΠ»ΡΠ½ΠΎ-Π»ΠΈΠΏΠΎΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ Π±Π°Π»Π°Π½ΡΠ° (ΠΠΠ) Π΄Π»Ρ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² ΠΊΠΎΡΡΠ΅Π»ΠΈΡΡΡΡ, ΠΏΡΠΈ ΡΡΠΎΠΌ Π±ΡΠ»Π° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΊΠ°Π·Π°Π½Π½ΡΠΌΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ. ΠΠΎΠ»ΠΈΠΌΠ΅ΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΡΠΎΡΡΡΡ
ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΎΠ² Π² ΡΠ΅Π»ΠΎΠΌ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π»ΠΈ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΠΠ, ΡΠ΅ΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ»ΠΎΠΆΠ½ΡΡ
ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΎΠ², Ρ
ΠΎΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΠΠ Π΄Π»Ρ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² ΡΠ°Π·Π½ΡΡ
ΡΠ΅ΡΠΈΠΉ, Π½ΠΎ Ρ Π±Π»ΠΈΠ·ΠΊΠΈΠΌΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΡΠΌΠΈ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π±ΡΠ»ΠΈ Π±Π»ΠΈΠ·ΠΊΠΈ. ΠΡΠ»ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ, ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΡΠ΅Ρ
ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·Π°ΡΠΎΡΠΎΠ² ΠΏΡΡΠΌΡΡ
ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ
ΡΠΌΡΠ»ΡΡΠΈΠΉ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ Π°Π³ΡΠ΅Π³Π°ΡΠΈΠ²Π½ΠΎΠΉ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΡΠΌΡΠ»ΡΡΠΈΠΉ ΠΎΠ±ΠΎΠΈΡ
ΡΠΈΠΏΠΎΠ². Π£ΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡ ΡΠΌΡΠ»ΡΡΠΈΠΉ Π·Π°Π²ΠΈΡΠ΅Π»Π° ΠΊΠ°ΠΊ ΠΎΡ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΠΉΠ½ΡΡ
Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ»ΡΠ½ΡΡ
Π³ΡΡΠΏΠΏ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² ΡΠΈΠ»Π°ΡΡΠ°Π½Π°ΠΌΠΈ, ΡΠ°ΠΊ ΠΈ ΠΎΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΡ ΠΈ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ° ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ². ΠΠ»Ρ Π²ΡΠ΅Ρ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΡ ΠΏΡΡΠΌΡΡ
ΡΠΌΡΠ»ΡΡΠΈΠΉ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π»Π°, Π° ΠΎΠ±ΡΠ°ΡΠ½ΡΡ
ΡΠΌΡΠ»ΡΡΠΈΠΉ β ΡΠ½ΠΈΠΆΠ°Π»Π°ΡΡ Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ»ΡΠ½ΡΡ
Π³ΡΡΠΏΠΏ ΡΠΈΠ»Π°ΡΡΠ°Π½Π°ΠΌΠΈ. Π‘ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΡ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ° ΡΠ°Π·ΠΌΠ΅ΡΡ ΠΊΠ°ΠΏΠ΅Π»Ρ ΠΊΠ°ΠΊ ΠΏΡΡΠΌΡΡ
, ΡΠ°ΠΊ ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ
ΡΠΌΡΠ»ΡΡΠΈΠΉ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π»ΠΈΡΡ. ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΡΠ°Π·ΠΌΠ΅Ρ ΠΊΠ°ΠΏΠ΅Π»Ρ ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΡΠΌΡΠ»ΡΡΠΈΠΈ Π±ΡΠ» ΠΏΠΎΠ»ΡΡΠ΅Π½ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΠΠ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΎΠ² Ρ Π½ΠΈΠ·ΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠΌΠΈ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΡΠΌΠΈ Π±Π»ΠΎΠΊΠ°ΠΌΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ»ΠΎΠΆΠ½ΡΡ
ΡΡΠΈΡΠΎΠ².ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
ΠΠΠ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΠΈΠ»Π°ΡΡΠ°Π½ΠΎΠ²ΡΠ΅ Π³ΡΡΠΏΠΏΡ. ΠΠ°ΡΡΠΈΡΡΡ ΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°, Π΅Π³ΠΎ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ ΠΌΠ°ΡΡΡ ΠΈ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΠΉΠ½ΡΡ
ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
Π³ΡΡΠΏΠΏ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΠΠ Ρ Π·Π°Π΄Π°Π½Π½ΡΠΌΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ
Π€ΠΠΠΠΠ-Π₯ΠΠΠΠ§ΠΠ‘ΠΠΠ Π‘ΠΠΠΠ‘Π’ΠΠ ΠΠΠΠ ΠΠΠΠΠΠΠΠΠΠΠ Π‘ΠΠΠ Π₯Π ΠΠΠΠΠ’ΠΠΠΠΠΠΠΠ ΠΠΠΠΠΠ€ΠΠ ΠΠΠΠΠΠΠ ΠΠ ΠΠ‘ΠΠΠΠ 2,2-ΠΠΠ‘(ΠΠΠ’ΠΠΠΠ)ΠΠ ΠΠΠΠΠΠΠΠΠ ΠΠΠ‘ΠΠΠ’Π«
Synthetic surfactants have a wide application in various areas from medicine to agriculture, with biodegradable surfactants holding the greatest promise. Promising compounds for the synthesis of such surfactants are polyethylene oxide and polymers are the poly(Ξ±-hydroxyacid)s: polylactide (i.e. PLA), polyglycolide (i.e. PGA), poly-Ξ΅-caprolactone (PCL), polyhydroxybutyrate (PHB) and their copolymers. Because the biodegradation of polymeric surfactants yields natural metabolites, their medical and biotechnological applications are most attractive. A number of studies shows advantages of branched polymer surfactants compared linear surfactants, however, systematic studies of the correlation between the branched structures of amphiphilic copolymers and their surface activities are absent. Hyperbranched polyester polyol based on 2,2-bis(methylol)propionic acid are widely used as modifiers of polymeric materials (for example, in the manufacture of paintwork materials), additives for polymers to improve extrusion and also as nanocontainers for targeted drug delivery. In the present study the colloidal chemical properties of the polyether polyol 2,2-bis (methylol) propionic acid of the fourth pseudo generation (trade name Boltorn H40) were studied and it was shown that they reduce the interfacial tension at the hydrocarbon solution of surfactant/water to low.Π‘ΠΈΠ½ΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎ-Π°ΠΊΡΠΈΠ²Π½ΡΠ΅ Π²Π΅ΡΠ΅ΡΡΠ²Π° ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π² ΡΠ°ΠΌΡΡ
ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΎΡΡΠ°ΡΠ»ΡΡ
- ΠΎΡ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Ρ Π΄ΠΎ ΡΠ΅Π»ΡΡΠΊΠΎΠ³ΠΎ Ρ
ΠΎΠ·ΡΠΉΡΡΠ²Π°, ΠΏΡΠΈΡΠ΅ΠΌ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΠΉ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ Π±ΠΈΠΎΠ΄Π΅ΡΡΡΡΠΊΡΠΈΡΡΠ΅ΠΌΡΠ΅ ΠΠΠ. ΠΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡΠΌΠΈ Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠ°ΠΊΠΈΡ
ΠΠΠ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠΎΠ»ΠΈΡΡΠΈΠ»Π΅Π½ΠΎΠΊΡΠΈΠ΄ ΠΈ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΡ Ξ±-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠΊΠΈΡΠ»ΠΎΡ: ΠΏΠΎΠ»ΠΈΠ»Π°ΠΊΡΠΈΠ΄, ΠΏΠΎΠ»ΠΈΠ³Π»ΠΈΠΊΠΎΠ»ΠΈΠ΄, ΠΏΠΎΠ»ΠΈ(Ξ΅-ΠΊΠ°ΠΏΡΠΎΠ»Π°ΠΊΡΠΎΠ½), ΠΏΠΎΠ»ΠΈΠ³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ±ΡΡΠΈΡΠ°Ρ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΡ
ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΡ. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠ°ΠΌΠΈ Π΄Π΅ΡΡΡΡΠΊΡΠΈΠΈ ΡΠ°ΠΊΠΈΡ
ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
ΠΠΠ ΡΠ²Π»ΡΡΡΡΡ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΡ, ΠΈΡ
ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Π΅ ΠΈ Π±ΠΈΠΎΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π΄ΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎ. Π ΡΡΠ΄Π΅ ΡΠ°Π±ΠΎΡ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
ΡΠ²Π΅ΡΡ
ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΡΡ
ΠΠΠ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌΠΈ ΠΠΠ, ΠΎΠ΄Π½Π°ΠΊΠΎ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΡΡΡΡΠΊΡΡΡΡ Π°ΠΌΡΠΈΡΠΈΠ»ΡΠ½ΡΡ
ΡΠ²Π΅ΡΡ
ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΡΡ
ΠΠΠ Ρ ΠΈΡ
ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ ΠΎΡΡΡΡΡΡΠ²ΡΡΡ. Π‘Π²Π΅ΡΡ
ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΡΠ΅ Π±ΠΈΠΎΡΠ°Π·Π»Π°Π³Π°Π΅ΠΌΡΠ΅ ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΏΠΎΠ»ΠΈΠΎΠ»Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ 2,2-Π±ΠΈΡ(ΠΌΠ΅ΡΠΈΠ»ΠΎΠ»)ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΎΡΠΎΠ² ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅ Π»Π°ΠΊΠΎΠΊΡΠ°ΡΠΎΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ²), Π΄ΠΎΠ±Π°Π²ΠΎΠΊ ΠΊ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°ΠΌ Π΄Π»Ρ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΡΠΊΡΡΡΡΠ·ΠΈΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π½Π°Π½ΠΎΠΊΠΎΠ½ΡΠ΅ΠΉΠ½Π΅ΡΠΎΠ² Π΄Π»Ρ Π°Π΄ΡΠ΅ΡΠ½ΠΎΠΉ Π΄ΠΎΡΡΠ°Π²ΠΊΠΈ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ. Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΈΠ·ΡΡΠ΅Π½Ρ ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½ΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠΎΠ»ΠΈΡΡΠΈΡΠΏΠΎΠ»ΠΈΠΎΠ»Π° 2,2-Π±ΠΈΡ(ΠΌΠ΅ΡΠΈΠ»ΠΎΠ»)ΠΏΡΠΎΠΏΠΈΠΎΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ ΡΠ΅ΡΠ²Π΅ΡΡΠΎΠΉ ΠΏΡΠ΅Π²Π΄ΠΎΠ³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ (ΡΠΎΡΠ³ΠΎΠ²ΠΎΠ΅ ΠΈΠΌΡ Boltorn H40) ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄Π°Π½Π½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎ-Π°ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ ΠΈ ΡΠ½ΠΈΠΆΠ°Π΅Ρ ΠΌΠ΅ΠΆΡΠ°Π·Π½ΠΎΠ΅ Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½Π° Π³ΡΠ°Π½ΠΈΡΠ΅ ΡΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΡΠΉ ΡΠ°ΡΡΠ²ΠΎΡ ΠΠΠ/Π²ΠΎΠ΄Π° Π΄ΠΎ Π½ΠΈΠ·ΠΊΠΈΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ
SILATRANE-CONTAINING POLYMETHACRYLATES
The possibility of synthesizing silatrane-containing polymers was investigated using three different synthetic methods: the formation of silatrane fragments from polymers with trialkoxysilyl groups, the copolymerization of silatrane-containing monomers, and the reaction of silatranes with functional copolymers. The obtained polymethacrylate copolymers were characterized using gel permeation chromatography, IR and NMR spectroscopy. It was shown that depending on the synthesis scheme used, polymers were obtained in the form of three-dimensional structures or soluble products. It was established that the molecular weight of the synthesized polymers depended significantly on both the content of silatrane fragments and the synthesis technique used. It was shown that the modification of linear carboxyl-containing copolymers by silatranes allows the synthesis of high-molecular polymers with a high content of silatrane fragments. For the synthesized polymers, thermal properties were investigated, and the hydrophobicity of the surface of polymer films was also evaluated. It was found that all the studied polymers did not have clear melting and crystallization temperatures. The polymers were stable in an inert atmosphere up to 270-280 Β°C, whereas in air they decomposed at lower temperatures with the restructuring of the macromolecular skeleton and the formation of highly heat-resistant silicone structures. An increase in the content of silatrane moieties in the copolymers led to an increase in the hydrophilicity of polymers
The effect of poly-N-vinylcaprolactam on enzymatic activity of trypsin
It is known that some synthetic polymers can enhance the stability of some proteins including enzymes against thermal denaturation. An important example of such behaviour is poly-N-vinylcaprolactam (PVC), although the mechanism of this phenomenon is not fully understood. This paper deals with this problem with the system PVC-trypsin as an example. PVC is a polymer, which has lower critical solution temperature (LCST) in aqueous solution. It is shown that the rate of enzymatic hydrolysis of a substrate β benzoyl arginine β n-nitroanilide (BAPNA) β with trypsin in aqueous solutions of PVC at 25ΒΊC is higher than that in the buffer solution. It is supposed that this effect is a consequence of the complex formation of trypsin with PVC affecting the conformation of the protein and binding of the substrate. The complexation brings about a decrease of the Michaelis constant and an increase of the rate of the biocatalyst interaction with the substrate. It is found that the activity of trypsin depends on the ratio of the enzyme to the substrate. The complexation of trypsin to poly-N-vinylcaprolactam can have influence on the enzymatic activity of the protein at temperatures above LCST, as well as on trypsin trapping in the precipitating polymer. It is noted that, when one determines the enzyme activity by spectral methods, it is necessary to take into account the possibility of complex formation of the polymer with another substance in the reaction system, which can cause errors
BIODEGRADABLE POLYMER MATERIALS FOR MEDICAL APPLICATIONS: FROM IMPLANTS TO ORGANS
Development of modern medical technologies would be impossible without the application of various materials with special properties. Over the last decade there has been a marked increase in interest in biodegradable materials for use in medicine and other areas of the national economy. In medicine, biodegradable polymers offer great potential for controlled drug delivery and wound management (e.g., adhesives, sutures and surgical meshes), for orthopedic devices (screws, pins and rods), nonwoven materials and scaffolds for tissue engineering. Among the family of biodegradable polyesters the most extensively investigated and the most widely used polymers are poly(Ξ±-hydroxyacid)s: polylactide (i.e. PLA), polyglycolide (i.e. PGA), poly-Ξ΅-caprolactone (PCL), polydioxanone and their copolymers. Controlling the molecular and supramolecular structure of biodegradable polymers allows tuning the physico-chemical and mechanical characteristics of the materials as well as their degradation kinetics. This enables selecting the optimal composition and structure of the material for the development of a broad range of biomedical products. Introduction of various functional fillers such as calcium phosphates allows creating bioactive composite materials with improved mechanical properties. To manufacture the highly dispersed biomedical materials for regenerative medicine electrospinning and freeze-drying are employed. Varying the technological parameters of the process enables to produce materials and devices with predetermined pore sizes and various mechanical properties. In order to increase the effectiveness of a great number of drugs the perspective approach is their inclusion into nanosized polymer micelles based on amphiphilic block copolymers of lactide and ethylene oxide. Different crystallization behavior of the lactide blocks and controlled regulation of their length allows producing micelles with various sizes and morphology. In this article we have attempted to provide an overview of works that are under way in the area of biodegradable polymers research and development in our group
Novel polymer surfactants based on the branched silatrane-containing polyesters and polyethers
Objectives. Biologically active polymeric surfactants are a new promising class of macromolecules that can find application in medicine, cosmetology, and agriculture. In this study, a number of new biologically active amphiphilic polymers based on branched silatrane-containing polyesters and polyethers were obtained, and their surface-active properties were investigated.Methods. The branched polymers were represented by polyethers and polyesters, obtained respectively via the anionic polymerization of 1,2-epoxypropanol or a combination of equilibrium polycondensation and ring opening polymerization. The polymers were modified with 3-isocyanopropylsilatrane and trimethylethoxysilane to obtain the amphiphilic compounds containing silatrane groups bonded to the polymer backbone by the urethane bond. The structure of the synthesized polymer silatranes was confirmed via nuclear magnetic resonance spectroscopy and gel permeation chromatography. The surface active properties of all the copolymers obtained were investigated in connection with their obvious amphiphilicity. In particular, the formation of micelles in aqueous solutions is such a property. The critical micelle concentrations were determined by a method of quenching the fluorescence of the polymers.Results. It was shown that the values of the critical micelle concentrations and the hydrophilic-lipophilic balance values of polymers determined by the Griffin equation correlate well with each other. A linear relationship between the hydrophilic-lipophilic balance and the critical micelle concentrations was established. At the same time, polyether-based polymers generally showed higher critical micelle concentrations than polyester-based polymers, although the hydrophilic-lipophilic balance values for polymers of different series, but with close degrees of substitution, were close. It was found that the use of all synthesized polymers as stabilizers of direct and reverse emulsions leads to an increase in the aggregative stability of both types of emulsions. The stability of emulsions depended both on the degree of substitution of peripheral hydroxyl groups of polymers by silatranes and on the molecular weight and structure of the branched block of polymers. The stability of direct emulsions increased for all polymers, while that of inverse emulsions decreased with an increasing degree of substitution of hydroxyl groups by silatranes. The increase of the branched block molecular weight led to an increase of droplet sizes for both direct and inverse emulsions. The smallest droplet size for direct and inverse emulsions was obtained using polymers with low molecular weight branched polyester blocks as surfactants.Conclusions. The results obtained prove the possibility of creating polymer surfactants containing silatrane groups. By varying the structure of the polymer, its molecular weight and the degree of substitution of peripheral functional groups, it is possible to obtain surfactants with desired surface properties