БИОРАЗЛАГАЕМЫЕ ПОЛИМЕРНЫЕ МАТЕРИАЛЫ ДЛЯ МЕДИЦИНЫ: ОТ ИМПЛАНТА К ОРГАНУ

Abstract

Development of modern medical technologies would be impossible without the application of various materials with special properties. Over the last decade there has been a marked increase in interest in biodegradable materials for use in medicine and other areas of the national economy. In medicine, biodegradable polymers offer great potential for controlled drug delivery and wound management (e.g., adhesives, sutures and surgical meshes), for orthopedic devices (screws, pins and rods), nonwoven materials and scaffolds for tissue engineering. Among the family of biodegradable polyesters the most extensively investigated and the most widely used polymers are poly(α-hydroxyacid)s: polylactide (i.e. PLA), polyglycolide (i.e. PGA), poly-ε-caprolactone (PCL), polydioxanone and their copolymers. Controlling the molecular and supramolecular structure of biodegradable polymers allows tuning the physico-chemical and mechanical characteristics of the materials as well as their degradation kinetics. This enables selecting the optimal composition and structure of the material for the development of a broad range of biomedical products. Introduction of various functional fillers such as calcium phosphates allows creating bioactive composite materials with improved mechanical properties. To manufacture the highly dispersed biomedical materials for regenerative medicine electrospinning and freeze-drying are employed. Varying the technological parameters of the process enables to produce materials and devices with predetermined pore sizes and various mechanical properties. In order to increase the effectiveness of a great number of drugs the perspective approach is their inclusion into nanosized polymer micelles based on amphiphilic block copolymers of lactide and ethylene oxide. Different crystallization behavior of the lactide blocks and controlled regulation of their length allows producing micelles with various sizes and morphology. In this article we have attempted to provide an overview of works that are under way in the area of biodegradable polymers research and development in our group.Развитие современных медицинских технологий было бы невозможно без применения различных материалов со специальными свойствами. В последнее десятилетие наблюдается все возрастающий интерес к биоразлагаемым материалам для использования в медицине и других областях народного хозяйства. Синтетические биоразлагаемые полимеры широко используются в медицине для создания систем контролируемой доставки лекарственных препаратов, шовных хирургических материалов, для изготовления ортопедических изделий (винты, штифты, стержни), а также нетканых материалов и матриксов для тканевой инженерии. Наиболее востребованными полимерами для изготовления изделий биомедицинского назначения являются сложные полиэфиры α-гидроксикислот: полилактид, полигликолид, поли(ε-капролактон), полидиоксанон, а также их сополимеры. Регулирование молекулярной и надмолекулярной структуры биоразлагаемых полимеров позволяет управлять физико-химическими и физико-механическими характеристиками материалов, а также кинетикой их биодеградации. Это дает возможность подбирать оптимальный состав и структуру материала для разработки широкого ассортимента биомедицинских изделий. Введение различных функциональных наполнителей, таких как кальций-фосфаты, в структуру материала позволяет создавать биоактивные композиционные материалы с улучшенными физико-механическими характеристиками. Для получения высокодисперсных биомедицинских материалов для регенеративной медицины применяют такие методы как электроформование и лиофилизация. Варьирование технологических параметров процесса обеспечивает возможность изготовления материалов и изделий с заданным размером пор и различными механическими характеристиками. Повысить эффективность действия многих лекарственных средств можно путем включения их в наноразмерные полимерные мицеллы на основе амфифильных блочных сополимеров лактида и этиленоксида. Различная способность блоков лактида к кристаллизации и направленное изменение длины блоков позволяет получать мицеллы с различным размером и морфологией. В данной статье мы попытались сделать обзор основных работ, проводимых в нашем научном коллективе в области биоразлагаемых полимеров

    Similar works